ON A GENERALIZATION OF THE PÓLYA-WIMAN CONJECTURE

YOUNG-ONE KIM

1. Introduction

This paper is concerned with the zeros of successive derivatives of real entire functions. In order to state our results, we introduce the following notations: An entire function which assumes only real values on the real axis is said to be a real entire function. Thus, if a complex number is a zero of a real entire function, then its conjugate is also a zero of the same function. An entire function g(z) is said to be of genus 0, if it can be expressed in the form

$$g(z) = cz^n \prod_{j} \left(1 - \frac{z}{a_j} \right),\,$$

where c is a constant, n is a nonnegative integer, and a_1, a_2, \ldots are nonzero complex numbers with $\sum |a_j|^{-1} < \infty$. On the other hand, an entire function g(z) is said to be of genus 1, if it is not of genus 0 and if it can be expressed in the form

$$g(z) = cz^n e^{\gamma z} \prod_{i} \left(1 - \frac{z}{a_i} \right) e^{\frac{z}{a_i}},$$

where c, γ are constants, n is a nonnegative integer, and a_1, a_2, \ldots are nonzero complex numbers with $\sum |a_j|^{-2} < \infty$. A real entire function f(z) is said to be of *genus* 1^* , if it can be represented in the form $f(z) = e^{-\alpha z^2}g(z)$ where $\alpha \geq 0$ and g(z) is a real polynomial or a real entire function of genus 0 or a real entire function of genus 1.

In 1930, Pólya and Wiman conjectured that if a real entire function f(z) of genus 1* has only a finite number of nonreal zeros, then there

Received March 23, 1994.

Work supported by SNU-GARC and Sejong university research fund.

is a positive integer m_0 such that if $m \ge m_0$, then $f^{(m)}(z)$ has only real zeros [P1, P2, P3, W1, W2]. This conjecture has been completely proved by T. Craven, G. Csordas, W. Smith, and the author [CCS1, CCS2, K1, K2]. In this paper, we will prove the following generalization of the Pólya-Wiman conjecture.

THEOREM. Let C be an arbitrary nonnegative real number. If a real entire function f(z) of genus 1* has only a finite number of zeros outside the infinite strip $|\operatorname{Im} z| \leq C$, then there is a positive integer m_0 such that if $m \geq m_0$, then all the zeros of $f^{(m)}(z)$ are distributed in the infinite strip $|\operatorname{Im} z| \leq C$.

2. Proof of the theorem

Before proving our theorem, let us introduce some terminologies. The order ρ of an entire function f(z) is defined by

$$\rho = \overline{\lim}_{r \to \infty} \frac{\log \log M(r; f)}{\log r},$$

where M(r; f) is the maximum modulus of f(z) on the circle |z| = r, that is

$$M(r; f) = \max_{|z|=r} |f(z)|.$$

If an entire function f(z) is of order ρ and if $0 < \rho < \infty$, then the type τ of f(z) is defined by

$$\tau = \overline{\lim_{r \to \infty}} \, \frac{\log M(r; f)}{r^{\rho}}.$$

If $\tau = 0$, the function f(z) is said to be of minimal type, if $0 < \tau < \infty$ of mean type, and if $\tau = \infty$ of maximal type. If the entire function f(z) is represented by $\sum a_n z^n$, then its order ρ and type τ satisfy the following equations [L, p. 4, Theorem 2].

$$\rho = \overline{\lim}_{n \to \infty} \frac{n \log n}{-\log |a_n|}, \quad (e\tau \rho)^{\frac{1}{\rho}} = \overline{\lim}_{n \to \infty} n^{\frac{1}{\rho}} |a_n|^{\frac{1}{n}}.$$

In particular, order and type are unchanged by differentiation.

Now we can prove our theorem. Let f(z) be a nonconstant real entire function of genus 1*. Then f(z) can be expressed in the form

(1)
$$f(z) = cz^n e^{-\alpha z^2 + \beta z} \prod_k \left(1 - \frac{z}{a_k} \right) e^{\frac{z}{a_k}} \times \prod_j \left(1 - \frac{z}{c_j} \right) \left(1 - \frac{z}{\bar{c}_j} \right) e^{\left(\frac{1}{c_j} + \frac{1}{\bar{c}_j}\right)z},$$

where n is a nonnegative integer, $\alpha \geq 0$, c and β are real constants, a_k are the real zeros of f(z) which are different from 0, and c_j , \bar{c}_j are the nonreal zeros of f(z). Of course we have $\sum |a_k|^{-2} < \infty$ and $\sum |c_j|^{-2} < \infty$. For each pair (c_j, \bar{c}_j) of nonreal zeros of f(z) the closed disk

$$(x - \operatorname{Re} c_i)^2 + y^2 \le (\operatorname{Im} c_i)^2$$

is called the *Jensen disk* of f(z) associated with the pair (c_j, \bar{c}_j) of nonreal zeros of f(z), and the union of all the Jensen disks of f(z) will be denoted by $\mathcal{J}(f)$.

From (1), the logarithmic derivative of f(z) is given by

$$\begin{split} \frac{f'(z)}{f(z)} &= \frac{n}{z} - 2\alpha z + \beta + \sum_{k} \left(\frac{1}{z - a_k} + \frac{1}{a_k} \right) \\ &+ \sum_{i} \left(\frac{1}{z - c_j} + \frac{1}{z - \bar{c}_j} + \frac{2\operatorname{Re} c_j}{|c_j|^2} \right), \end{split}$$

and hence we have the following:

$$z \notin \mathbb{R} \cup \mathcal{J}(f) \Rightarrow (\operatorname{Im} z) \left(\operatorname{Im} \frac{f'(z)}{f(z)} \right) < 0.$$

In particular, all the nonreal zeros of f'(z) are in the set $\mathcal{J}(f)$. This fact was first announced by Jensen, and later proved by Nagy and Walsh.

JENSEN'S THEOREM. Let f(z) be a nonconstant real entire function of genus 1* and let z_1 be a nonreal zero of f'(z). Then there is a nonreal zero z_0 of f(z) such that

$$|z_1 - \operatorname{Re} z_0| \le \operatorname{Im} z_0.$$

For each nonnegative real number C let \mathcal{LP}^C be the class of all real entire functions of genus 1* whose zeros are distributed in the infinite strip $|\operatorname{Im} z| \leq C$. As an immediate consequence of [L, p. 331, Theorem 3], we have the following: a real entire function f(z) is in the class \mathcal{LP}^C , if and only if there is a sequence $\{P_n(z)\}$ of real polynomials such that (a) for all n the zeros of $P_n(z)$ are distributed in the infinite strip $|\operatorname{Im} z| \leq C$, and (b) $\{P_n(z)\}$ converges to f(z) uniformly on compact sets in the complex plane. In particular, the Gauss-Lucas theorem implies that the class \mathcal{LP}^C is closed under differentiation for each nonnegative real number C.

Now assume that C is a nonnegative real number, and that f(z) is a nonconstant real entire function of genus 1* which has only a finite number of zeros outside the infinite strip $|\operatorname{Im} z| \leq C$. We can find a positive real number C' such that $f \in \mathcal{LP}^{C'}$. Since the class $\mathcal{LP}^{C'}$ is closed under differentiation, $f^{(n)} \in \mathcal{LP}^{C'}$ for all $n = 1, 2, \ldots$, and we wish to show that there is a positive integer m_0 such that $f^{(m_0)} \in \mathcal{LP}^C$. To obtain a contradiction, suppose that $f^{(n)} \notin \mathcal{LP}^C$ for all $n = 1, 2, \ldots$

For $n=0,1,2,\ldots$, let $X_n=\{z: \operatorname{Im} z>C, f^{(n)}(z)=0\}$. From the assumption that X_0 is a finite set, the set $J(f)\setminus\{z: |\operatorname{Im} z|\leq C\}$ is bounded. On the other hand, Jensen's theorem implies that $X_1\subset J(f)\setminus\{z: |\operatorname{Im} z|\leq C\}$. In particular, the set X_1 is bounded. Since X_1 is discrete, X_1 is a finite set. Using the same argument, we can show that X_2 is finite, and then X_3 is finite, and so on.

Since each X_n is a nonempty finite set, $X = \prod_{n=0}^{\infty} X_n$ is a nonempty compact space with respect to the product topology. Define E_n , $n = 1, 2, \ldots$, as follows.

$$E_n = \{(\zeta_0, \zeta_1, \zeta_2, \dots) \in X : |\zeta_{j+1} - \operatorname{Re} \zeta_j| \le \operatorname{Im} \zeta_j, \quad j = 0, 1, \dots, n\}.$$

Then each E_n is a closed subset of the compact space X and $E_1 \supset E_2 \supset \cdots$. Moreover Jensen's theorem implies that $E_n \neq \emptyset$, $n = 1, 2, \ldots$. Therefore $\bigcap_{n=1}^{\infty} E_n \neq \emptyset$. This means that there is an infinite sequence z_0, z_1, z_2, \ldots , of complex numbers such that for all $n = 0, 1, 2, \ldots$, $\operatorname{Im} z_n > C$, $f^{(n)}(z_n) = 0$ and

$$(2) |z_{n+1} - \operatorname{Re} z_n| \le \operatorname{Im} z_n.$$

Let $z_n = \alpha_n + i\beta_n$, $n = 0, 1, 2, \dots$ Then (2) implies that $\{\beta_n\}$ is a nonincreasing sequence of positive real numbers. Moreover, by an induction, we have

(3)
$$|z_{m} - z_{m+1}| + |z_{m+1} - z_{m+2}| + \dots + |z_{m+n-1} - z_{m+n}|$$

$$\leq \beta_{m} - \beta_{m+n} + \sqrt{n(\beta_{m}^{2} - \beta_{m+n}^{2})},$$

for m = 0, 1, 2, ..., and for n = 1, 2,Let $\beta = \lim_{n \to \infty} \beta_n$. From (3), we have

(4)
$$\frac{\overline{\lim}_{n \to \infty} \frac{|z_m - z_{m+1}| + |z_{m+1} - z_{m+2}| + \dots + |z_{m+n-1} - z_{m+n}|}{n^{\frac{1}{2}}} \\
\leq \sqrt{\beta_m^2 - \beta^2} \longrightarrow 0, \quad \text{as} \quad m \to \infty.$$

To complete the proof of our theorem, we need the following theorem of Gontcharoff.

GONTCHAROFF'S THEOREM. Let f(z) be an entire function and assume the following:

- (a) $M(r; f) = O(\exp(A + \varepsilon)r^{\rho})$ for all $\varepsilon > 0$,

(b)
$$f^{(n)}(z_n) = 0$$
, $n = 0, 1, 2, ...$,
(c) $\lim_{n \to \infty} \frac{|z_0 - z_1| + |z_1 - z_2| + \dots + |z_{n-1} - z_n|}{n^{\frac{1}{\rho}}} = \tau$,

(d) $\rho A \tau^{\rho} < \omega^{\rho} (1+\omega)^{1-\rho}$, where ω is the positive root of the equation $\omega^{\rho} e^{\omega + 1} = 1.$

Then $f(z) \equiv 0$.

Proof. See [G, pp. 29-31].

From (1), we see that f(z) is at most of order 2 and mean type. Hence there is a positive real number A such that $M(r; f) = O(\exp(Ar^2))$ as $r \to \infty$. Choose a positive real number τ so that $2A\tau^2 < \omega^2(1+\omega)^{-1}$, where ω is the positive root of the equation $\omega^2 e^{\omega+1} = 1$. From (4), there is a positive integer m such that

$$\overline{\lim_{n\to\infty}} \frac{|z_m - z_{m+1}| + |z_{m+1} - z_{m+2}| + \dots + |z_{m+n-1} - z_{m+n}|}{n^{\frac{1}{2}}} < \tau.$$

Since order and type are unchanged by differentiation, $M(r; f^{(m)}) = O(\exp(Ar^2))$ as $r \to \infty$. Therefore, Gontcharoff's theorem implies that $f^{(m)}(z) \equiv 0$. In particular, f(z) is a real polynomial. But if f(z) is a real polynomial, then there must be a positive integer n such that $f^{(n)} \in \mathcal{LP}^C$.

From this contradiction, we see that our theorem is true.

References

- [B] R. P. Boas, Entire Functions, Academic Press, New York, 1954.
- [CCS1] T. Craven, G. Csordas and W. Smith, The zeros of derivatives of entire functions and the Pólya-Wiman Conjecture, Ann. of Math. 125 (1987), 405-431.
- [CCS2] T. Craven, G. Csordas and W. Smith, Zeros of derivatives of entire functions, Proc. Amer. Math. Soc. 101 (1987), 323-326.
- [G] W. Gontcharoff, Recherches sur le dériveés des fonctions analytiques, Ann. École Norm. 47 (1930), 1-78.
- [K1] Y. O. Kim, A proof of the Pólya-Wiman conjecture, Proc. Amer. Math. Soc. 109 (1990), 1045-1052.
- [K2] Y. O. Kim, On a theorem of Craven, Csordas and Smith, Complex Variables Theory Appl. 22 (1993), 207-209.
- [L] B. Ja. Levin, Distribution of Zeros of Entire Functions, Trans. Math. Monographs, vol 5, Amer. Math. Soc., Providence, R.I., 1964.
- [P1] G. Pólya, Some problems connected with Fourier's work on transcendental equations, Quart. J. Math. Oxford Ser. 1 (1930), 21-34.
- [P2] G. Pólya, Über die Realität der Nullstellen fast aller Ableitungen gewisser ganzer Funktionen, Math. Ann. 114 (1937), 622-634.
- [P3] G. Pólya, On the zeros of derivatives of a function and its analytic character, Bull. Amer. Math. Soc. 49 (1943), 178-191.
- [W1] A. Wiman, Uber eine asymptotische Eigenschaft der Ableitungen der ganzen Funktionen von den Geschlechtern 1 und 2 mit einer endlichen Anzahl von Nullstellen, Math. Ann. 104 (1930), 169-181.
- [W2] A. Wiman, Über die Realität der Nullstellen fast aller Ableitungen gewisser ganzer Funktionen, Math. Ann. 114 (1937), 617-621.

Department of Mathematics Sejong University Seoul 133-747, Korea