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ON A GENERALIZATION OF THE
POLYA-WIMAN CONJECTURE

YOUNG-ONE KIM

1. Introduction

This paper is concerned with the zeros of successive derivatives of real
entire functions. In order to state our results, we introduce the following
notations: An entire function which assumes only real values on the real
axis 1s said to be a real entire function. Thus, if a complex number is
a zero of a real entire function, then its conjugate is also a zero of the
same function. An entire function ¢(z) is said to be of genus 0, if it can
be expressed in the form

9(z) = ez"[] (1 - f—) :

j J

where c is a constant, n is a nonnegative integer, and aj,as,... are
nonzero complex numbers with )" |a;|7! < oc. On the other hand, an
entire function g(z) is said to be of genus 1, if it is not of genus 0 and if
it can be expressed in the form

z z
= nJ—yz 1 - — a;
g(z) = cz"e ”( a-)e i,

f 7

where ¢, v are constants, n is a nonnegative integer, and ay,as,... are
nonzero complex numbers with ) [a;|7? < co. A real entire function
f(2) is said to be of genus 1*, if it can be represented in the form f(z) =
e—o‘zzg(z) where o > 0 and g¢(z) is a real polynomial or a real entire
function of genus 0 or a real entire function of genus 1.

In 1930, Pélya and Wiman conjectured that if a real entire function
f(z) of genus 1* has only a finite number of nonreal zeros, then there
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is o positive integer mo such that if m > mg, then f™(2) has only
real zeros [P1, P2, P3, W1, W2]. This conjecture has been completely
proved by T. Craven, G. Csordas, W. Smith, and the author [CCSI,
CCS2, K1, K2]. In this paper, we will prove the following generalization
of the Pdlya-Wiman conjecture.

THEOREM. Let C be an arbitrary nonnegative real number. If a real
entire function f(z) of genus 1* has only a finite number of zeros outside
the infinite strip [Im z| < C, then there is a positive integer mg such that
if m > myg, then all the zeros of fU™)(2) are distributed in the infinite
strip Im z| < C.

2. Proof of the theorem

Before proving our theorem, let us introduce some terminologies. The
order p of an entire function f(z) is defined by

= loglog M(r; f)
hm ——

?
r—00 log r

p prony
where M(r; f) is the maximum modulus of f(z) on the circle lz| = r,
that is
M(r; f) = max|f(2)}
If an entire function f(z) is of order p and if 0 < p < oo, then the type
T of f(z) is defined by

=— log M(r; f)
lim ——=.

r—00 rf

T =

If 7 = 0, the function f(z) is said to be of minimal type, if 0 < 7 < oo of
mean type, and if 7 = co of mazimal type. If the entire function f(z) 1s
represented by 3" a,z", then its order p and type 7 satisfy the following
equations [L, p. 4, Theorem 2].

— nlogn 1 — 1, 1
p= B Tiogenye (79 = L el

In particular, order and type are unchanged by differentiation.
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Now we can prove our theorem. Let f(z) be a nonconstant real entire
function of genus 1*. Then f(z) can be expressed in the form

n_—oz +ﬁz Z 2
z cze I I 1—-— a
f( ) ( ak) ¢

k

A5 2)

where n is a nonnegative integer, & > 0, c and 3 are real constants, ax are
the real zeros of f(z) which are different from 0, and ¢;, ¢; are the nonreal
zeros of f(z). Of course we have ) |ax|™2 < oc and 3 |¢;|7? < co. For
each pair (cj,¢;) of nonreal zeros of f(z) the closed disk

(z — Re c]‘)2 +y? < (Imcj)2

is called the Jensen disk of f(z) associated with the pair (¢j, ¢;) of nonreal
zeros of f(z), and the union of all the Jensen disks of f(z) will be denoted

by J(f).
From (1), the logarithmic derivative of f(z) is given by

fllz) _n_ ( _1_>
f(#) z 2az+ﬂ+z z_ak+ak

1 2Rec;
+;<Z‘Cj+z_5j+ Ilezj)’

and hence we have the following:

z¢ RUJ(f) = (Im=z) (Imj;(( ))> < 0.

In particular, all the nonreal zeros of f'(z) are in the set J(f). This fact
was first announced by Jensen, and later proved by Nagy and Walsh.

JENSEN’s THEOREM. Let f(z) be a nonconstant real entire function
of genus 1* and let 21 be a nonreal zero of f'(z). Then there is a nonreal
zero zo of f(z) such that

|21 — Re zg| < Im 2.



828 Young-One Kim

For each nonnegative real number C let LPC be the class of all real
entire functions of genus 1* whose zeros are distributed in the infinite
strip |Im 2| < C. As an immediate consequence of [L, p. 331, Theorem
3], we have the following: a real entire function f(z) is in the class
LPC, if and only if there is a sequence {Pn(2)} of real polynomials such
that (a) for all n the zeros of Pn(z) are distributed in the infinite strip
[Im 2| < C, and (b) {P.(2)} converges to f(z) uniformly on compact sets
in the complez plane. In particular, the Gauss-Lucas theorem implies
that the class LPC is closed under differentiation for each nonnegative
real number C.

Now assume that C is a nonnegative real number, and that f(z) is
a nonconstant real entire function of genus 1* which has only a finite
number of zeros outside the infinite strip [Imz| < C. We can find a
positive real number C' such that f € £LPC . Since the class £LPC is
closed under differentiation, f(* ¢ LPC for all n = 1,2,..., and we
wish to show that there is a positive integer mg such that f(™e) ¢ £PC.
To obtain a contradiction, suppose that f(™ ¢ LP¢ foralln =1,2,....

For n = 0,1,2,..., let X, = {z : Imz > C, f"(z) = 0}. From
the assumption that X; is a finite set, the set J(f)\ {z : |[Imz| < C}
is bounded. On the other hand, Jensen’s theorem implies that X; C
J(f)\ {z:|Imz| < C}. In particular, the set X; is bounded. Since X,
1s discrete, X, 1s a finite set. Using the same argument, we can show
that X, is finite, and then X3 is finite, and so on.

Since each X, is a nonempty finite set, X = [To2, X= is a nonempty
compact space with respect to the product topology. Define E,, n =
1,2,..., as follows.

En = {(Cﬂaglac2a"‘) €X: ICj+l —RGC]| SIIDC], ]:Oalaan}

Then each FE, is a closed subset of the compact space X and E; D
E; D ---. Moreover Jensen’s theorem implies that E,, #0, n =1,2,....
Therefore (oo, En # 0. This means that there is an infinite sequence
20, 21, 2g,..., of complex numbers such that for all n = 0,1,2,...,
Imz, >C, f™(z,) =0 and

(2) |zn+1 — Re zpn| < Im z,,.
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Let 2z, = an + ifn, n = 0,1,2,.... Then (2) implies that {B,} is
a nonincreasing sequence of positive real numbers. Moreover, by an
induction, we have

|zm - zm—}-ll + |2m+l - Zm+2| + lzm+n-—l - zm+nl

< Bm — ﬁm+n + \/n(ﬂm2 - ﬁm-{-nz);

(3)

for m=0,1,2,...,and forn =1,2,....
Let 8 = limp .o fn. From (3), we have

— |2Zm — Zm+1| + |2Zm+1 — Zm42| + - + |Zm4n—1 — Zm+n
lim T
(4) noe n2

<VBm?-p2—0, as m — oo.

To complete the proof of our theorem, we need the following theorem

of Gontcharoff.

GONTCHAROFF’S THEOREM. Let f(z) be an entire function and as-
sume the following:

(a) M(r; f) = O(exp(A + €)r?) for all ¢ > 0,

(b) f(™(2,) =0, n=0,1,2,...,

(c) Tm lz0 — 21| + |21 -22|1+"'+|2n—1 — 2| _ .

n-—o00

?

mne
(d) pAr? < wP(1+w)'~*, where w is the positive root of the equation
wlewtl =1,

Then f(2) =0.
Proof. See (G, pp. 29-31].

From (1), we see that f(z) is at most of order 2 and mean type. Hence
there is a positive real number A such that M(r; f) = O(exp(Ar?)) as
r — oo. Choose a positive real number 7 so that 2472 < w?(1 +w)™!,
where w is the positive root of the equation w?e“t! = 1. From (4), there
1s a positive integer m such that

o lzm — Zm41| + |2m41 — Zm+i| + -+ [Zmin-1 = Zmnl <r
00 T2
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Since order and type are unchanged by differentiation, M(r; f(™)) =
O(exp(Ar?)) as r — oco. Therefore, Gontcharoff’s theorem implies that
f™(2) = 0. In particular, f(z) is a real polynomial. But if f(z) is
a real polynomial, then there must be a positive integer n such that
f e £PC.

From this contradiction, we see that our theorem is true.

(B]
[ccsa)

[cCs2)

(K1]

(K2]
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