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Abstract

In gpatial information processing, particularly in non-renewable resource exploration,
the spatial data sets, including remote sensing, geophysical, geological and geochemical
data, have to be geocoded onto a reference map and integrated for the final analysis
and interpretation. Application of a computer based GIS (Geographical Information
System or Geological Information System) at some point of the spatial data
integration/fusion processing is now a logical and essential step. It should, however, he
pointed out that the basic concepts of the GIS based spatial data fusion were
developed with insufficient mathematical understanding of spatial characteristics or
quantitative modeling framework of the data. Furthermore many remote sensing and
geological data sets, available for many exploration projects, are spatially incomplete in
coverage and introduce spatially uneven information distribution. In addition, spectral
information of many spatial data sets is often imprecise due to digital rescaling. Direct
applications of GIS systems to spatial data fusion can therefore result in seriously
erroneous final results. To resolve this problem, some of the important mathematical
information representation techniques are briefly reviewed and discussed in this paper
with consideration of spatial and spectral charactenistics of the common remote sensing
and exploration data. They include the basic probabilistic approach, the evidential belief
function approach (Dempster-Shafer method) and the fuzzy logic approach. Even
though the basic concepts of these three approaches are different, proper application of
the techniques and careful interpretation of the final results are expected to yield
acceptable conclusions in each case. Actual tests with real data (Moon, 1990a; An et
al,, 1991, 1992, 1993) have shown that implementation and application of the methods
discussed in this paper consistently provide more accurate final results than most
direct applications of GIS techniques.
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1. Introduction

In non-renewable resource exploration, certain measurements and observations, such as
earth’s gravitational field anomaly, geochemical lake-sediment data or mapping of rock
formations form a ’spatial data set’. To quantize these types of spatial information, there
have recently been several statistical and AI/EXPERT system approaches proposed and
applied (McCammon, 1986; Agterberg, 1989; Bonham-~Carter and Agterberg, 1989; An, 1989,
Moon, 1990b). Among the statistical and AI/EXPERT system approaches, Bayesian
probabilistic  approaches (Agterberg, 1989; Bonham-Cater and Agterberg, 1989;
Bonham-Carter et al.,1988; Singer and Kuoda, 1988; etc.) and the Dempster-Shafer type
orthogonal sum rule approach of evidential Dbelief have been directly applied for mineral
exploration problems (Moon, 1989; Chung and Moon, 1990; Moon, 1990a; Moon and An,
1991). Based on a somewhat similar reasoning process, the weight of evidence modelling
method is presented and successfully applied to mineral potential mapping (Bonham-Carter
et al, 1990). A fuzzy logic approach has bheen applied for mineral explorﬁtion research in
recent papers by An et al. (1991, 1992), Moon and An (1990) and Moon (1992). Application
of the Dempster-Shafer method has also been reported for a mixed multi-spectral data
situation including remote sensing data (Lee et al., 1987, Kim and Swain, 1989). Most of
the early developments in mathematical applcaions in exploration geology is reviewed by
Bonham-Carter (1990). Wang (1989) applied the fuzzy set theory in conjunction with a
remote sensing study and Blonda et al. (1989) applied the fuzzy logic approach in
classifying multi-temporal remotely sensed image data. Goodenough et al. (1989) and An et
al. (1992) applied a rule based AI/EXPERT approach to a mixed multi-sensor remote

sensing problem.

In the following discussion, digital map inventory preparation, creation of base maps,
resampling techniques, interpolation, geo—-coding and other basic GIS functions are assumed
to be understood and carried out. In addition, the geophysical exploration data we wish to
integrate are assumed to be two dimensional spatial information, even when most of them
originate from three dimensional bodies, describing three dimensional exploration targets.
Traditional remote sensing techniques have treated only the map/surface features or the
surface projections of subsurface anomalies whereas the geophysical exploration technigues
can in fact detect and image geological bodies at subsurface depths. Simplification of the

complex three dimensional information into two dimensional information layers does
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simplify mathematical discussion and the following discussion focuses on only two
dimensional aspects. However, generalization of the problem into the three dimensional
framework is rather trivial and will be left to a future discussion.

2. Representation of Exploration Information

Geological and geophysical data required for resource exploration can be qualitative,
quantitative, pictorial, textural or any combination of these. Remote sensing images and
various maps carry information about the exploration target in widely ranging temporal and
spatial windows. If one considers the actual spatial extent of the exploration target,
information resolution can be defined in terms of a mathematical function or a set of basis
functions that describes the actual target. Pixel and information resolution of common
geological and geophysical data used in resouwrce exploration varies considerably from
sensor to sensor. The widely varying spatial resolution can pose serious problems for
certain types of exploration information integration tasks. In the GIS type overlaying of
information layers, grossly different resolutions introduce serious difficulty in interpolation
and geocoding of the averaged pixel values. Resolution differences sometimes require
different representation schemes which are not always compatible to others during the
information representation stage. In this respect, the manner with which the exploration
information. can be described and organized must be consistent and justifiable, so that
exploration personnel’s understanding and formulation of the problem, with respect to the
exploration data on hand, can be precise and technically accurate (Argialas and Harlow,
1990). Relationships between models, whether they represent a geological, geophysical or
AI/EXPERT system, should first be identified and categorized based on the spatial and
terrestrial spectral characteristics of the exploration data. The role of models is then to
categorize the visual information into usable forms for meaningful reasoning and, therefore,
to enable an interpreter to effectively analyze the objective properties of the exploration
targets being studied. Among many levels of abstraction of the exploration data, only the

spatial exploration data will be focused on in the following discussion.
Given several layers of remote sensing, geophysical, geological and other auxiliary data,

the information levels or the exploration evidences usually have varying degrees of

certainty about the target existence or possibilities of the exploration targets. Some of
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these will be proved to be either correct(true) or incorrect(fulse), based on the follow up
ground truth study. If one can assign a probability value or a degree of belief to each
piece or type of evidence, the numerical value with varving degrees of certainty about the
chosen exploration target is in fact represented by a choice of the interpreter's information
or partial belief functions(Shafer, 1976). Philosophical argument on the interpreter's or the
explorationist’'s partial belief towards the chosen propositions often poses considerable
ambiguity and mathematical quantification of ones belief raises some fundamental questions
among certain users. However, these philosophical and conceptual discussion is out of

scope for this paper and will be left for future discussion elsewhere.

2.1 Basic Framework for Information Representation

Suppose that n geoscience maps are assenibled for exploration of a specific deposit type
in a prospecting area A. Each layer of geophysical and geological map data is regarded as
an exploration evidence, denoted by Ex (k=1,2, .., n). The whole data set of n map layers

in A is represented by :
E = {El,Ez, ,En} 1)

For each layer (exploration evidence) Ex , we define a mapping dy :

for each observation e in Ex ,
d.: Ex— [ 0,1] (2)

where di (e) represents the geologist’'s partial belief that an observed value, e, in Ex is
related to a mineral deposit or the exploration target at the observation point in A. Of
course, the method of defining such a mapping from exploration evidence is not only

difficult, but also is a very subjective task, depending on the geologist.

In addition, all the sub-areas covered by the same survey or observation, e, are
represented by the same value di(e). Hence, from this type of representation, we are not
able to discuss the probabilities or possibilities that a sub-area or a pixel associated with a
specific size, contains a mineral deposit as discussed in Chung and Moon (1991). Also dk

must be defined for every obhservation e of Ex.

Let us now define a proposition ET (exploration target) that a point p in A belongs to a
deposit of the type and ‘JE’I‘ states the opposite of ET which implies that a point p is not

located in any deposit. We will discuss, among many others, three different interpretations
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of the mapping dx in terms of ET and —\E’I‘. Note that the point p is not associated with
any size scale.

2.2 Probabilistic Interpretation

Suppose that di(e) is defined as the probability that e of Ex is related to having a
deposit at a point p where the observation e is made. Then dk (e) should be interpreted as
the conditional probability, denoted by Probk {e | ET} that the observation e of Ek is

made at a point p conditioned by p containing in a target deposit.

In this interpretation, what we really wish to have is the conditional probability, denoted
by Probk {ET | e}, that p is contained in a deposit, given that the observation e was

made at p. Using Bayes’ theorem, we obtain :

Probk{ ET }Prob k{ e‘ ET } (v%)
Prob,{ e} )

Prob {ET]e} =

where Probx{ ET } is the prior probability that any point in A contains a deposit and
Probk{ e } is the probability that the observation e is made at a point p in A regardless
whether p contains a deposit or not. It should be noted here that both Prob{ ET } and
Probll e } can easily be estimated in A and do not play any crucial roles in the
discussions that follow. Particularly, Probe{ ET } should be a constant for all k, because it

is not related to any specific type of evidence.

Using the probability rule, we also have

Prob {—ETle} = 1— Prob {ETle} (4

2.3 Dempster - Shafer Belief Function Interpretation

In this approach(Shafer, 1976), the mapping dx (e) for each piece of evidence, k, is
defined as the degree to which the observation e of Ex supports the proposition ET and
the approach denotes by Bel(ETle) a Belief function. We also define another mapping
called a Plausibility function, denoted by Plsk(ETle), which represents the degree to which
the observation e of Ex is plausible for ET. The difference between these two mappings,
Plsk(ETle) - Belk(ETle) represents the ignorance of one’s belief of ET, given evidence e in

Ex(Shafer, 1976); the two mappings have the following relationship :
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Pls (ETle) = 1 — Bel, (1 ETle) (5)

Compared to the probabilistic interpretation in the previous section, one would expect the
following relationship(Wally, 1987) :

Pls (ETle) = Prob,(ETle) = Bel (ETle) (6)

" If the observation e has perfect information on ET, one should expect that Plsy(ETle) -
Belk(ETle) = 0 and Plsk(ETle) = Belk(ETle). In this case, Belk is called the Bayesian Belief
function and one would expect that all three mappings, Plsy(ETle), Probk(ETle) and
Belk(ETIe) should have identical properties.

2.4 Fuzzy Logic Interpretation

In this interpretation, the mapping dk for each piece of evidence, Ek, represents the
degree of "compatibility” of the observation e at p for ET (Zadeh, 1965). The following

membership function : .
Uk(ETle) = dk(e) (7)

represents the degree of certainty that p is a member of the set of points which belong
to a deposit, given e in A. A membership mapping Ux(ETle) close to 1 implies that D is
likely to contain a deposit.

3. Integration of Data

Consider a set of n observed values {e1, e, .., ey} of n pieces of evidence {Ey, Es, ... Eu}
at a point p in A. Suppose {di, dz, .., du} are defined on {Ej, Es, ... , Eu}. Then we have n
representations {di(er), dalez), ... , dulen)} at the point p where the observations are made
for ET. We wish to integrate these n representations into one single function. The

integration rules depend on the interpretation of the mappings.

3.1 Probabilistic Approach

As discussed in Section 2.2, we have di(ex) = Probx {edET)} for all k =1, 2, .. , n.
Using these values, we wish to have the conditional probability, denoted by Prob {ETle,
€, ... en} , that p contains a deposit given that the observations {e1, e, ... , es} are made

at p. In general, it is impossible to obtain the conditional probability from {dk(e) = Proby{ex
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[ET}} (k = 1,2, .., n) without having the joint probability distribution function Prob {(ET,

el €, .. , ex). Here we discuss two possible approximations of the Prob {ETles, ez, ... , en}
from { di(er), do(e2), ... , dulen) ).

The simplest and easiest approximation of Prob { ET | e, ez, ... , en } is :

i di(ey) _ 2 Prob,{e, JET} ‘ )
k=1 n =1 n
However, using the Bayes’ theorem, we have
b e, By
Prob(ETle,, ey, ... , e = o0 (EDHProb {ey, ey elET) )

Prob {e;,eq ... , €,

where Prob {ET} is the prior probability that a point in A contains a deposit, Prob {ei,
€, .. .en} is the probability that the observations {e;, ez .. , e.} occur in A and both
probabhilities can be estimated from (Ei, Ep, ... , Ey}. From Eq.(9) above, it is obvious that

Eq.(8) has no justification as an approximation.

Another approximation would be the use of Bayes' theorem with the conditional
independence assumption (Agterberg, 1989, McCammon, 1986; Bonham-Carter and

Agterberg, 1989). Under the conditional independence assumption, we have

Prob {e;, e;, ... , e, | ET} = kfill Prob.{e, | ET} . (10)

By substituting Eq.(10) into Eq.(9), we obtain

Prob (ET} kriI‘ Prob_k {e, | ET)
Prob {e;, ey, ..., e,}
Prob {ET} ,I;Il di(ex)

= Prob {e;, €3, ..., €u)

Prob{ET|e), es, ... , e} =
(1

The linear approximation in Eq.(8) and the Bayesian estimator with conditional

independence in Eq.(11) are completely different and they are really not compatible.

3.2 Dempster — Shafer Approach

Suppose that we have {Bel(ETle1), Bel2(ETlez), .. , Bel(ETle))} and {Plsi(ETle1),
Pls2(ETles), ... , Plsu(ETlen)} in a Dempster - Shafer belief function representation. Then

we wish to define Bel(ETlel, ez, .. , e2) and Pls(ETle;, €2, .. , en) which represent the
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combination of n beliefs of the existence of ET at p where the n observations {el, es, ... ,
en} are made. Using Dempster's combination rule (Shafer, 1976), we can obtain Bel(ETle;,
g, ... , en) from {Bell(ETle;), Belo(ETles), ... , Belo(ETlen)}.

_ Dempster’s rule for combining Beli(ETle1) and Bel(ETlez) into Bel(ETle;, e) is :
ab+a(l —b—b") +b(l —a—a’)

Bel(ETIel, ez) =

l—(ab—a'b') ( 12)
— 1_ab+a’"(d-b=b)+'(Q1—-a—a’) '
Pls(ETle, e)) = 1 T—aboalb’

where a = Beli(ETler), a’ = 1 - Plsi(ETler), b = Belo(ETlez) and b’ = 1 - Plso(ETles).
By repeating Eq.(12) n-1 times, we obtain Bel(ETles, e, ... , en) and Pls(ETlel, e, ... , e
from {Beli(ETle1), BeL(ETlex), .. , BellETlew)} and {(Plsi(ETler), Plsa(ET]es),
Plsa(ETlen)}.

3.3 Fuzzy Set Approach

Suppose that we have the membership functions, U(ETlex) for all k = 1, 2, ... , n for all
pieces of evidence {e;, ey, .. ey} at a point p. We wish to define a membership function
U(ETley, €2, ... en} from n membership functions Ux(ETlek). This can be done using many
different types of operators available in fuzzy set theory (Zadeh, 1965). Some of the basic

operations that are most frequently applied to spatial information are as follows :

(1) Min - operator
U(ETle;, ez, ... e,) = minimum {U,(ETle;), Uy(ETles), ..., U (ETle,)} 13

(2) Max - operator
U(ETley, €3, ... e,) = maximum {U,(ETle;), Us(ETley), ..., U (ETle,)} (14)

(3) Algebraic sum operator

U(ETler €5, ... &) = ZUETle)~ 3 3 UETIe)U(ETle;)

+ ...+ ...
+(=1" Ui(ETle)) ... Us(ETle,).

(4) y - operator (Zimmermann and Zysno, 1980)
U(ETley, €5, ..., ) = [ kr';I1 U(ETle)] 477 =1 1—kr:11(1—Uk(ET|ek))] (16)

where 0 £ 7y £1
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4. Discussion and Conclusion

Most of the newly available computer based GISs are very effective for overlaying
digital (raster and vector) information and provide efficient tools for quantitative modeling
of spatial data. However, the intrinsic nature of impreciseness and incomplete coverage of
geological, geophysical and remote sensing data sets often used in Earth observation
science and resource exploration requires a proper quantitative information representation of
the data sets involved. Exploration data for nonrenwable reources usually have varying
range of spatial and depth resolutions and we need a carefully studied mathematical

information representation scheme, which is independent of spatial resolution.

The probabilistic  approach  (Bayesian), evidential belief function  approach
(Dempster-Shafer) and fuzzy logic approach have proved to be very effective whether they
are applied through a rule based AIVEXPERT system or through a straight data driven
inference system. The fuzzy logic approach is conceptually different from the above two
approaches. However, it can be very effective when the proposition (e.g. environmental
and/or exploration target) itself is vague and whén it is applied to single node problems.
Uncertainty of information can not be handled easily in the traditional probabilistic
approaches In most cases. Vagueness of evidence can be processed and interpreted in a
pseudo-probabilistic approach. However, incomplete spatial coverage, which is very common
in many resource exploration projects, poses a serious 1)1'01)1&:111 with the probabilistic
approach. The evidential belief function method (Dempster-Shafer method) can be
formulated to handle spatially incomplete coverage more appropriately, where the same
problem can sometimes result in unexpected and erroneous results with the probabilistic
approaches. If missing data points and incomplete survey coverage become important,
plausibility and ignorance of each data set have to be defined as precisely as possible and
the evidential belief function approach has advantage as it is cumvently formulated. The
fuzzy logic method can handle incompleteness of spatial coverage adequately but the fuzzy

reasoning process at the data fusion stage has over- and/or under-estimation problems.

The integrated final probability, computed either using the traditional Bayes rule
approach or from the evidential belief function approach, represents a real probability of
certainty towards the chosen target proposition. Similarly the integrated final membership

function represents a possibility of truthfulness towards the target proposition. However,
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quantitative relationships bhetween the fuzzy logic representation and the traditional
probability and the belief function representation cannot be established at this time. They
require further study. The problem of conditional dependency between the data sets poses
a serious uncertainties for these quantitative approaches and requires detailed investigation
in future (Moon, 1989, An et al, 1992). Another problem with applying fuzzy approach to
spatial data processing is the large number‘of available fuzzy operators upon which the
final membership function critically depends. There also exists unresolved problem in error
and uncertainty propagation in the target regions with incomplete data coverage (An et al.,
1993).
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