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Abstract

Muititemporal analysis with remotely sensed data is complicated by numerous
intervening factors, including atmospheric attenuation and occurrence of clouds that
obscure the relationship between ground and satellite observed spectral measurements.
A reconstruction systemy was developed to increase the discrimination capability for
imagery that has been modified by residual effects resulting from imperfect sensing of
the target and by atmospheric attenuation of the signal. Utilizing temporal information
based on an adaptive temporal filter, it recovers missing measurements resulting from
cloud cover and sensor noise and enhances the imagery. The temporal filter
effectively tracks a systematic trend in remote sensing data by using a polynomial
model. The reconstruction system were applied to the AVHRR data collected over
Korean Peninsula. The results show that missing measuremgnts are typically
recovered successfully and the temporal trend in vegetation change is exposed clearly

in the reconstructed series.

I. INTRODUCTION

Temporal studies with remotely sensed measurements are complicated by numerous
intervening factors, such as atmospheric attenuation and cloud occurrence. It tends to
obscure the relation between ground and satellite observed spectral measurements. During
the last decade, a wide range of statistical techniques has heen developed for analyzing

spectral imagery at single time step. The evolution of space engineering technology
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affects the quantity and quality of data collected through remote sensing. It is now
possible to contiguously acquire images at short, regular time intervals. However,
statistical approaches to multitemporal analysis of sequential imagery remain largely
unexplored, and few are designed to preserve the sequence of the observations in the
course of the analysis, although the temporal component in the sequence contains abundant,
useful information. The analysis for a long sequence of images with high temporal
resolution was made by Lee and Crawford [1], in which an adaptive system was developed
with a Bayesian restoration filter and a least squares linear estimation filter with an
escalator structure. The Lee’s algorithms are based on a general statistical model related
to digital image processes of remote sensing. This statistical structure may be so general
that it causes complexity in computation and memory for large images. In this study, the
Lee's algorithms were modified to be effective and efficient for large remotely sensed
images. Though the statistical structure is simplified in the modified system, it involves
essential characteristics that are shown in remote sensing data.

In multitemporal analysis of sequential imagery, there is a high likelihood that during
data acquisition periods the target site corresponding to any given pixel may be covered
by clouds, thereby resulting in missing data. The problem of cloud occurrence may be to
some extent avoided through the use of image compositing [2], a procedure in which
geographically registered data sets that are collected over a sequential period time are
compared and the best of a defined measurement is selected to represent the conditions
observed during that time period. This simple method which can be easily automated may
be quite effective in reducing cloud contamination given sufficiently long composite period.
But it is difficult to maintain a reasonable temporal resolution ahd also produce cloud-free
surface measurements. For any given time-composite period, there is no assurance that
cloud-free observations were recorded. Using long composite period will mask the subtler
surface changes between the scenes. To overcome this problem, cloud-free imagery can
be generated without losing temporal resolution in a given period hy automatic
unsupervised learning in the system through an adaptive temporal prediction.

Of great importance is the need to incorporate temporal variation of the spectral
component according to physical properties of targets and atmospheric changes into image
processing techniques. Most physical processes in remote sensing data that are observed
from land usually exhibit systematic trends in properties over a long time. This type of
variation is most apparent in the mean intensity process of the target distribution, which

usually dominates the temporal process. If temporal dependency in a sequence of remotely
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sensed images results from special cause rather than common cause, a polynomial model
can be used to track a trend in the intensity. With the polynomial model, the intensity at
the next time step can be predicted with an exponentially weighted criterion so that the
estimate reflects more recent variation in the process. The special and common causes
describe the systematic nonstationarity of the mean intensity and the random variation
about the mean intensity respectively. If the spatial structures of two images from same
area at the contiguous time steps are identical, missing measurements can be estimated
using predicted values from previous history. With this approach, it is possible to analyze
a sequence of images as an on-line process.

In remote sensing data, the original distribution of the radiated intensity is modified by
residual effects resulting from imperfect sensing of the target as well as atmospheric
attenuation of the signal. Image reconstruction algon'thms are based on the premise that a
reasonable representation of the original image can be recovered from a blured, noisy
version of the true target scene. The effectiveness of the algorithms depends on the
validity of the image model. Using a Bayesian estimation method, the system enhances
pictorial information of the image data for better interpretation by increasing the
discrimination capability for imagery that has been modified by the residual effects and
atmospheric attenuation. The Bayesian method uses a statistical model that can represent
a digital image process in remote sensing. The proposed system for adaptive reconstruction
of sequehtial imagery involves simultaneous considerations of temporal trends in the
process in conjunction with anisotropic spatial optical properties.

Of the various techniques that might be considered for the studies of vegetation
processes, only satellite remote sensing offers a realistic possibility to obtain the requisite
data because of the large aerial extent, strong spatial and temporal dynamics, and logistical
inaccessibility of the vegetation. Reflectance data from Advanced Very High Resolution
Radiometer (AVHRR) that is deployed on the NOAA-n series of polar orbiting
meteorological satellites are obtainable globally on a daily basis. Analyses of the relations
between AVHRR spectral measurements and vegetation related phenomena have heen
exceptionally successful and have encouraged great interest in the AVHRR sensor as a
global vegetation observatory [3][4]. The multispectral reflectance data of AVHRR have
been transformed and combined into various vegetation indices to minimize the variability
due to external factors [5]. The most common]y used vegetation index is the normalized
vegetation index (NVI) that is defined as the difference between AVHRR Channels 2 and 1

divided by their sum. It is well known that NVI is strongly dependent on the phenology
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of vegetation. This study involves a temporal analysis of Korean Peninsula imagery. The
NVI images were computed from the multispectral reflectance data that were compiled over
Korean Peninsula by the AVHRR system and the .proposed system was then applied to a
temporal sequence of the NVI images. '

This paper is organized as follows: Description of a statistical model that is assumed for
‘the reconstruction is presented in Section II.  Section III contains the algorithms of
Bayesian restoration, mean intensity estimation, spatial parameter estimation, adaptive
prediction and missing recovery as well as the integrated system. In Section IV, the
results of applying the algorithms to the AVHRR data are reported. Conclusions are

presented in Section V.,

II. MATHEMATICAL MODEL FOR DIGITAL IMAGE

This study uses a mathematical model for digital image processing, that is valid for
many physical processes in remote sensing data. Modification of the originally radiated
intensity due to residual effects of imperfect sensing and atmospheric attenuation of the
signal can be represented by a linear system. An image is spatially correlated by making

the linear system act upon the distribution of the original intensity. Let I, = {1,2,-, n}

be the index set of # pixels for a sample image. If the mean intensity, original intensity

and observed intensity processes at time !¢ are repectively

Ul={l]t,i9 e}, th{Xt,i, iel,} and le{Yl,z'v e},

the following model is assumed for remtely sensed image processing:
Y= .2131,," Lit &

<l (1)
Xr,i =Ut,i+’71,i ;

where at time f, S, ; is a spatial coefficient associated with the ith and jth pixels, &,
and 7,; are random variables related to the spatial noise and the ith pixel's temporal

error. For mathematical simplicity, the spatial attributes are assumed to be homogeneous
over the whole image space. If necessary, sub-scenes could be analyzed if homogeneity
characteristics are only localized. Under this assumption, the spatial noise has an identical

distribution and the spatial operator corresponds to a homogeneous linear system on the
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whole target area. The temporal error is considered to be dependent only on its own
pixel’s signal. If an image has a periodic boundary and is acted upon by a homogeneous
linear system, the spatial operator has a circular form. Without time index, the spatial

operator is taken the form of

Sp S1Sp e S
S = circular[ S)] = S';" 5:” ‘?1 S’;‘z ) 2)
S] SZ S3 b SO
Without loss of generality, the spatial noise and the temporal error are assumed to be
distributed with Gaussian:

g~ 1ID M0,4%) and 7,,~ 1ID (0, &% ). (3

III. FEEDBACK SYSTEM OF ADAPTIVE RECONSTRUCTION

The feedback system combines five filters: Bayesian Intensity Restoration Filter (BIRF),
Adaptive Polynomial Prediction Filter (APPF), Missing Measurement Recovery Filter
(MMRF), Mean Intensity Estimation Filter (MIEF), Spatial Parameter Estimation Filter
(SPEF). Time and pixel indices are omitted for the variables to simplify notation in this

section, if it is not necessary.
A. BAYESIAN INTENSITY RESTORATION FILTER

If the probability structure of the process is known, the original intensity can be
restored from the observed data using Bayesian criterion [6). Given an observed process
Y, the Bayesian approach is to find the maximum a posteriori (MAP) estimate of X

from the mode of the posterior probability distribution, equivalently to maximize the log
likelihood function:

L,= log .(X]Y) + log F(X).

Denote X and I as the covariance matrices of the observation and the original intensity
of a sample image under Gaussian assumption of (3). If there is prior information about

the distribution of the original intensity, the posterior probability of X conditioned on Y,

AXIY)ocexp[ (Y-SX)IH(Y-SX)+(X-U)YIr(Xx-uj.
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Given the spatial coefficient matrix S, the mean intensity U, the covariance matrices
2 and T, the log likelihood equation is

(r'+27's9)X =271’y + I''u 4)

To solve directly the linear equation of (4), it is necessary to compute the inverse of the

ratrice that have a dimension corresponding to the number of the pixels. However, the

correct inverse is hardly obtained because the matrix dimension is too large even for small

images. Using an iterative approach similar to the point-Jacobian iteration method [7], the

equation of (4) can be solved without computing the inverse of the large matrice. Using

the mathematical model of (1), 2 and ' are diagonal matrices of nXn. If the spatial
operator S is a circular matrix, the matrix S"=S'S= circular[ S;] , is also a circular

matrix as in (2). The left side of (4) can be restated:

(r'+:31s)x=p(1+D71C)X

where
Sh .
o 317+ > ifi=j
D= {(D; i,jel,} where Dy={ 0i 0
0 if i#;
. if k=0
C=circular[ C,] , where C,= S,
5 if A#0
o
The equation of (4) is then rewritten as an iterative form:
=W X +2, k=1,2,- 6)

where
W= —-D7'C and Z=(ZD)7'S’Y + (I'D)"'U.

It converges to an unique solution of X in (4) for a given initial XU if W has a

spectral radius less than 1. If the matrix S° is diagonally dominant, that is,

pD
k0

s <183,

for each row of W= {w; i,/€1,},

n=1
e si
S | /ez=:1| k
Tl = EI’ D |~ Fesy) ¢!
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and the spectral radius of W is then less than 1 [8). In image processing, the residual
effects from nearby pixels are generally not greater than the spectral reflectance received
from the pointed nominal pixel. Therefore, S” can be assumed to be diagollay dominant.

It requires to compute only the inverses of the diagonal matrices D, X2 and I’ The first

part of (5) in the right side is re-expressed for computational purpose:

Xy Xy o Xy G
WX ={-Vi/D;} where V={V}= ){Z X3 >;(1 C;‘ (6)
Xn X] Xn—l Cu—l

In practice, a “spread window” for the residual effects is usually chosen with a low

order and computation of (6) is then reduced according to the order of the window.
B. MEAN INTENSITY ESTIMATION FILTER

Most environmental studies presume that a “surface patch” in an earth scene is likely to
be spatially continuous and cohesive. Therefore, pixels close together tend to have the
same intensity or similar intensities. A Gibbs random field (GRF) [9] is used to represent
the spatial dependency of the mean intensity process in neighboring pixels by
probabilistically quantifying the spatial smoothness. In this study, a homogenous GRF
with a periodic boundary is used as a measure to quantify the spatial continuity
probabilistically.

It is natural that neighboring pixels with closer intensity levels have a higher probability
of being of the same class. Using this idea, spatial smoothness can be quantified for the
image process by a pair-potential that is a function of Euclidean distance between the

mean intensities of the pixel pairs. A GRF related to a pair-clique system C, can define

a probability structure of the class configuration :

Hw)
Ep(w) = 2 ll’ij[ l](wi)_l](w;‘)] :

(i,)e€C,

1

x;'exp[ E(w)]
(7)

where x, is a normalizing factor, a; is a nonnegative coefficient that represents a

“bonding strength” of the ¢th and jth pixels, and X w; is the mean intensity of the
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class ; of the ith pixel. In (7), the energy function E, can be expressed with a

function of U rather than w:

E,(U)=UAU.

Consider a pair-clique system that is defined with the pixel pairs

{(4,9): 1<j and 7,7€1,}. If the pair-clique system is related to a homogenous random

field with a periodic boundary, A = circular[ A,] | is a circular matrix, in which

- ) _[—ag-y ifk=j—iorn—(i—9), (i,HeC’,
Ap=2 (z‘,:g'ecpa(’_') and A, { 0 otherwise (8)

where @(;_j is the coefficient associated with the index difference (7—1) between two
pixels. For example, for a sample image of n=n.<n, with the second order pair-clique

system, the 7#th pixel has four neighbors with the indices 7, £=1,2,3,4 where

- l'+1’l,(, if ién—hk
M=\ i+ hy—n, otherwise

and h=1, hy=n.—1, hy=n, hy=n.+1. Each pixel actually has eight neighbors

in the second neighborhood system. However, it is redundant to consider the other four
neighbors whose indices are less than the center pixel’s because the pair system is

symmetric. If @, is the coefficient related to the index difference /Ay,

Ap=2a1teytastay), A=A, 1=—a, A, 1 =A, . n=—a A,=A,, =—a,
A, =A, 1 =—a and all the other circular elemements of A are zeros.

Given the covariance matrix I' and the bonding coefficient matrix A, the posterior

probability of the mean intensity conditioned on the original intensity is
AUIX)ecexp[ (X—U)' T Y(X-U)+U AU]

Using the Bayesian technique and the iterative method as in BIRF, the iteration equation
of MIEF is established by redefining (5):

Us=WU,, +Z2=-D7'C U, +(I'D)'X, k=1,2,

where

- 70 -



Adaptive Reconstruction Of AVHRR NVI Sequential - Lee et al.

| S A, ifi=;
D= {Dii. i’ ]E In) where D,')': 67
0 if i#¢j
= ci {0 if k=0
C = circular[ C,] , where C, —[ A,  he0

For the honding coefficient matrix of (8), it is shown that MIEF always converges to an
unique solution of U. Larger choice for the bonding coefficient yields smoother
estimation. It is not easy to determine the amount of smoothing in the image.
Nevertheless, it is not necessary to consider this problem seriously in practice. Without
knowing the true image, there is no globally ideal solution. Lee was estimated

approximately the coefficients for some special cases [11].
C. SPATIAL PARAMETER ESTIMATION FILTER

For many remote sensing processes where temporal changes of atmospheric environment

affect the spatial components, the spatial coefficients should be considered not to be
stationary over time. Let X and Y be defined on a periodic Gaussian random field in a

finite image space. The likelihood and its equations of the spatial components are

L= log .AS, 59X, Y) o nlog .0 + —102— (Y —SX)'(Y—-SX) ©)

The product of S and X in (9) can be rewritten to take derivatives conveniently as in (6):

Xl XZ X,, SO
SX = Csz where C, = ){2 ){3 ':- ){1 and V, = S:‘l
Xn X] oee Xn—l Sn_]

The vector V corresponds to the discrete location-invariant point spread function of the
original intensity process. For the low order spread function, the column dimension of C,
are greatly reduced by eliminating zero elements of V. The maximum likelihood estimates
are then obtained by taking the partial derivatives with respect to V, and 6 in Q)

8_2 — (Y_Cx vs)’(Y_Cx vs)

n

V,=(C,/Cy7'C,’Y and

-7 -



Journal of the Korean Society of Remote Sensing, Vol. 10, No. 2, 1994
D. ADAPTIVE POLYNOMIAL PREDICTION FILTER

Original uncontaminated intensity, one characteristic of the physical processes that have
been remotely sensed and displayed in the image, exhibits temporal variations about the
mean intensity that is assumed to be due only to the target characteristics that are
generally dependent only on the target site. The temporal variations may be represented
by autoregressive moving average time serieses. This assumption is proper for a
stationary process. However, most physical processes observed in remote sensing data
usually exhibit systematic trends in properties over a long time. This type of variation is
most apparent in the mean intensity process and usually dominates the temporal process.

The variation in the mean intensity can be adaptively tracked by using a polynomial
function of time. If a realization of the intensity is sequentially given, the prediction of the
mean intensity at next time step can reflect more recent variations in the process with an
exponential weight criterion. If the original intensity process is only signal-dependent, it
can be assumed that the process is spatially independent. Under this assumption, the
mean intensity process can be considered for each pixel separately. Using a polynomial

model of order p, the original intensity process at time { in a pixel is represented by

X,= g,() + 7, where U,= g,(§) = 6,5 + Zﬁl 0, t". (10)

If the process is consistent with (10) and {x,, t=1#, 1t -, t,} is a realization sequence
of the mean intensity from the origin #,=0, the prediction of the original intensity at time

t, U, can be estimated with the exponentially weighted least squares criterion:
m—1 g .
min [7721‘" + Z] A (tim t,)772’j} (11)
=

where A is a weight coefficient selected in the range of 0<{A<Z1. The adaptive

polynomial filter sequentially generates the estimate with the exponentially weighted least

squares criterion by adaptively updating the polynomial coefficients over time:

for m>p and £ ¢, U, =6,T 12)
where
¢0(tm) ¢1(tm) o qsp(tm) ¢U(tm)
0, = ¢l(.tm) ¢2(.tm) ¢p+1_(tm) ¢1(_fm)

35(tw) b1t Bo(twd | |0t
T=(1 ¢t £ - )
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For 721,
¢k(t)') =A l/—li—|¢k(t)._]) + tf, k=0,1,2.---,2p 13
¢k(ti) =1 l;'"li—|¢k(t)._]) + t‘fxl’_’ k= 0'1'2' e P y

where ¢u(#))=¢(t,)=0, Vk The adaptive polynomial filter requires p+1 variables
for ¢ of (13) for each pixel respectively. Therefore, the memory complexity makes it

desirable to utilize the lowest order model that adequately captures the variations for the
purpose of locally tracking the temporal trend in recent observations.

The temporal error variance can be directly estimated with the predicted values, but it
results in the abnormal estimation if the measurement is incorrectly observed by imperfect
sensing at that time. Using a weight for the adjustment according to the temporal

variation, the variance of X, is smoothly updated over time:

o

8% = ﬂsazt—l +(Q _'ﬂs)(xt - (L)“

where 0 6,<1.

E. MISSING MEASUREMENT RECOVERY FILTER AND INTEGRATED SYSTEM

Given the original intensity, missing measurements can be estimated directly from the
first equation of (1) by assuming that the spatial structures are same in the contiguous
time steps for MMRF. The feedback system combines the five filters for the adaptive
reconstruction of sequential imagery. The predicted mean intensity in APPF is an estimate
of the original intensity of (1). If the system is initiated, APPF provides the estimate to
MMRF for recovering missing measurements, MIEF for estimating the current mean
intensity process and BIRF for initiating the filter. Using the cument observation and the
recovered data in MMRF, SPEF calculates the spatial parameters, that are provided to
BIRF as a component of the probability structure of the original intensity for the Bayesian
restoration as well as the mean intensity estimated in MIEF. BIRF restores the original
intensity based on the Bayesian criterion and the polynomial coefficients in APPF are
updated using the original intensity reconstructed in BIRF.

In the integrated system, the mean intensity is estimated using the predicted values, the
image is reconstructed based on the estimated mean intensity and the reconstructed image

is used for next prediction. Due to this recursive estimation, APPF is often too slow to
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follow the trend correctly and extreme observations may result in the divergence of the
estimated process. It is necessary for the mean intensity prediction to be more sensitive
to changes in observations and reasonably compatible with the observed data. Though the
measurements are spatially contaminated by the residual effects, they should still have the
same or a very similar trend as that of the original intensity process. If a pixel currently
has an observation, APPF estimates the pixel's intensity by fitting the ohservation at the
present time. This makes the estimate compatible with the observation while reflecting
the temporal trend. For this purpose, APPF of (12) is modified:

0 = [ @n'T. if v exists
! 6, T, otherwise

where

Foltw) Bt = 3, Y[ Po(tw)
B, = %_(t,n) az.(tm) $p+-1(tm) Jl_(tm)

ap.(tm) $p+.l(tm) gzp.(tm) Jp.(tm)

$k(tm)=/11_t~¢k(tm) + tk, £k=10,1,2,---,2p
e(t) = 2"""0(tw) + t'vi, k=0,1,2,-,p

The feedback system is outlined in Figure 1.

N SPEF
YO A

Y, %
APPF MMRF

be>

>
<>

BIRF —‘e—

[
.

.c>

MIEF

Figure 1. Outline of Adaptive Feedback System
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IV. APPLICATIONS

The 6001000 AVHRR image data analyzed in this study were acquired over Korean

Peninsula from February to November of 1991. First, the 16 images of NVI data were

generated from the Local Average Cover (LAC) data set, the highest resolution available
from AVHRR with approximately 1 km® spatial resolution, that is geographically registered.

The proposed system is originally designed to analyze sequential imagery of a high
temporal resolution as an on-line process by adaptively reconstructing the missing or
contaminated data. However, the data source of Korean Peninsula imagery with a high
temporal resolution was not available for this study, although AVHRR provides daily
images of all regions of the globe. In order to show a temporal change for vegetation
activity on Korean Peninsula using remotely sensed image data, the data set with the low
temporal resolution were analyzed for the examples of this study instead of another data
set with a high temporal resolution. Figure 2 contain the four of the 16 NVI images.
Water areas, that are not of interest, were masked for the analysis. In the image
illustrations, black shades on the land represent areas of missing measwement, and areas
of higher NVI value have brighter shades. The sensor system failed to collect the
observations mainly due to cloud cover at the observed date and the peculiar line as in the
third illustration was generated by sensor noises. The upper part of the second image
was blurred and some areas in the third and fourth images have unsmoothed shades. It
might have resulted from atmospheric contamination or the presence of haze.

Because information from the current observation at each time step is gradually reflected
in the estimation, the adaptive system may be suitable for the analysis of a image
sequence of high temporal resolution for the on-line process. However, it often occurs
that the data availability for the analysis is restricted by many reasons in practice. If the
sequential imagery has a low temporal resolution, it may be reconstructed by combining
the results that are generated by analyzing the sequence of the images in forward and
backward time directions respectively. The exponential weight of (11) in the adaptive
prediction indicates the desired trade-off between conflicting goals of fidelity with
observations and temporal smdothness. The estimated process tends to be consistent with
the temporal trend by using a weight close to 1, while it follows recent variation in the
image space with a smaller weight. For the iterative approach of a low temporal
resolution sequence, it is desirable to make the estimates rely more on the curent

observations.
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(0. 1) MAY, 27 of 199 - (0.2) MAY, 30 of 1991}

Figure 2. AVHRR NVI Images of 600%1000 Observed from Korean Peninsula in 1991

(black shade - missing, bright shade - high NVI, dark shade - low NVI)
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) MAY, 27 of 199

Figure 3.

(R.2) MAY,

J0 of 1991

Reconstruction Results of Korean Peninsula NVI Images
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The system was designed to set 4=0.95 using the second order polynomial function
and the anisotropic spatial operator corresponding to 5X5 spread window. An initial
sequence of three images is required to initiate the system.  Under the assumption that
the process is periodic, the initial sequence was calculated based on the first and the last
images by recovering missing measurements with the observations of the spatially-nearest
pixels if they exist. Figure 3 illustrates the reconstructed images corresponding to Figure
2. The results were obtained by averaging the estimated values in both time directions

using the adaptive system with same condition.

Figure 4. Location Map of Points Chosen for Plots of NVI Values
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Figure 5 and 6 plot the observed and reconstructed spectral responses over time for 24
points, which were chosen arbitrarily, but uniformly over the entire peninsula. Figure 4
shows locations of the chosen points. In the plots of Figure 5 and 6, the values of each
point were calculated by averaging the spectral responses except missing data from the
square area of 3 x 3 pixels. If all the measurements of 9 pixels are missing, the point
was assigned to zero. The short term variations exhibited in the observed data are not
due to real changes in the land cover response. They mainly result from sensor’s
imperfect characteristics and environmental interference. For example, if an area is partially

covered by clouds, it is observed with low NVI values.

[ Observation ——e—— Reconstruction

NVI

NVI

NVI

NVI

(]

T T T 1 T T T T T T T T T T T
Mar May Jul Sep Nov Mar May Jul Sep Nov Mar May Jul Sep Nov

Figure 5. Plots of NVI Values for Observed and Reconstructed Series
(missing points are assigned to zero values)
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The variations in the process have been stabilized according to the local temporal trend
in the reconstructed series. The plots show that the adaptive system recovers deteriorated
responses of low values in high vegetation season as well as missing data with plausible
estimates by compromising between observation and local trend. It is necessary that the
field study of relations between timely ground truth and remotely-sensed NVI
measurements precede the quantitative analysis of the reconstruction results. At the
present time, the ground truth information associated with NVI values in Korean Peninsula
is very limited. Therefore, the detailed analysis of quantitative evaluation for the results

will be left for another study including the examination of NVI processes in the peninsula.

[-) Observation —e— Reconstruction

NVI
NVI
NVI

0.3 - o i

~ )

NVI 0.2 o i . i

0.1 . ° |

° [ °
0. °- - ° o o [ o °

M 5 L h 1 1 T L 1 T T LA T T
ar ay Jul Sep Nov Mar May Jul Sep Nov- Mar May Jul Sep Nov

Figure 6. Plots of NVI Values for Observed and Reconstructed Series
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V. CONCLUSIONS

Accomplishing multitemporal analyses is complicated by numerous intervening factors,
such as instrument calibration, view geometry, atmospheric attenuation and cloud
occurrence, that tend to obscure the relation between ground and satellite observed spectral
measurements. Temporal resolution is mostly reduced by cloud occurrence and sensor
noise. For many locations on the globe, cloud occurrence prevents regularly repeating
ground measurements. Even if the magnitude of the cloud impact in reducing temporal
resolution varies significantly in time and space, on any given day, approximately 50% of
the earth’s surface are obscured by clouds. The problem of cloud occurrence can be to
great extent avoided through the use of the adaptive system, that is designed as an
automatic on-line process to analyze a sequence of images acquired at shorter time
intervals. This technique increases the discrimination capability for imagery that has been
modified by spatial properties of imperfect sensing on the target and atmospheric
attenuation of the signal as well as the recovery capability for missing measurements.
The adaptive system may lead to improved classification of imagery and more correct
detection of temporal changes.

The proposed system was applied for a sporadic series of 16 AVHRR images collected
over Korean Peninsula for one year and the final estimation of the series was obtained by
combining the results of the analyses in different time directions. As shown in the
experimental results, bemporal trends in vegetation changes are éxposed more clearly in the
reconstructed series than the observations, and most of missing/deteriorated measurements
are typically recovered successfully by the system. *However, for the on-line process, the
adaptive system requires sequential data observed at short time intervals such that it
smoothly tracks temporal changes of the process through transient periods in the forward
time direction. In near future, the experimental study for the adaptive reconstruction
system will be extended using AVHRR images that have Dbeen collected over Korean

Peninsula on a daily basis.
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