Azt X} ¥ GilO[E} Bjoj& w2l Al

AlZE 214 wlolel wjol X e A|Fd)

d&8 3 & IR HIsvs F 2
2 o

ARE AR wlolebo]x el AYHE FE A7 £ A7 A|QAc) B ETel e A7 A Hlo]
e Wol Re] g Agdel sl FUE AT AlYdke T B4, o) $4dv), 2o 447
R AYAZA Y. TE FAZKE A7 A Aol 2RE Ba selg AUk 22l o) 247
T A2 FHREIE olgate] A7 AW Asjols) ojn)o} WS AU} 2= 447) Update net.
work$} 2& A4 £ei§ G4sked 49 218 A # 34 W4 PEE AMesklt spxtes o
Ay 2ot S Aojel thale) Eojsigct.

Temporal Database Management Testbed

Dong Ho KIM', Keun Whan JEON',
Kee Jung KIM!

Kyung Ja JEONG',
and Keun Ho RYU"

ABSTRACT

The Temporal Database Management Testbed supports valid and transaction time. In this
paper, we discuss the design and implementation of a testbed of a temporal database manage-
ment system in main memory. The testbed consists of a syntactic analyzer, a semantic analyzer,
a code generator, and an interpreter.

The syntactic analyzer builds a parse tree from a temporal query. The semantic analyzer then
checks it for correctness against the system catalog. The code generator builds an execution
tree termed an update network.We employ an incremental view materialization for the execution
tree. After building the execution tree, the interpreter activates each node of the execution tree.

Also, the indexing structure and the concurrency control are discussed in the testbed.

1. Introduction

Conventional database management systems

(DBMS) cannot provide for store and ac-

cess of time-varying data, because conven-
tional DBMS only support up-to-date infor-
mation. In some applications it is not appro-

priate to discard old information. Therefore,

- This work was supported in part by the Ministry of Trade In-
dustry & Energy, in part by the Korea Science and Engineer
ing Foundation, KOSEF 931-0900-067-2 and in part by NSF
grant [R1-8902707.
t2 8 1 3Rd8e AFeHaa

ttA 8 f:2Edsn FHHN rasr

EFAS 019940 249 219, AJAbebE 119944 44 259

temporal database systems
(TDBMS) support time to override those
drawbacks.

Time can be classified as valid time, trans
action time, and user defined time[SA86]. The

valid time i1s a time at which an event hap-

management

pens in the real world, while the transaction
time is a time at which it is recorded in the
database. Depending on supported time, four
different types of relations may result: snap-
shot, rollback, historical, and temporal. Each
one of these can be associated with a class
of time. A snapshot relation only supports

current time. A rollback relation supports

2 SRYRHRIREYS =X H1H H1E(94. 5)

transaction time and a historical relation sup-
ports valid time without rollback. Lastly, a
temporal relation supports all of the above,
valid time and transaction time. Therefore, a
TDBMS should support all four types of data-
base relations and two types of times.

In this paper, we discuss the design and
implementation of a TDBMS testbed in main
memory (termed simply the testbed). The
testbed supports the temporal query language
TQuel[Snod87]. The basic idea of the tempor-
al database system was from McKenzie
[McK88]. The testbed employs- incremental
query evaluation to implement the main mem-
ory resident data. To focus on this aspect we
have not yet implemented support for secon-
dary storage; all data resides in main memo-
ry. The availability of inexpensive, large main
memories coupled with the need for faster
response time bring a new perspective to da-
tabase technology[Bit86]. The study of main
memory databases has been active for several
years [AHKS85,DKO+84,Eic88,Hag86, LC87,
1LS89], but they have been studied in conven-
tional databases. We design and implement a
temporal database management system in
main memory, which is named testbed.

The testbed consists of a syntactic analyz-
er, a semantic analyzer, a code generator,
and an interpreter. The syntactic analyzer
parses a temporal query and builds a parse
tree including time operator. The semantic an-
alyzer then checks it for correctness against
the system catalog. The code generator builds
an execution tree for time operator. Finally,
the interpreter activates each node of the ex-
ecution tree and then each operators with
time factor are executed, and produces a

result for the temporal query.

In Section 2, an overview of temporal quer-
ies and their examples are given.
Then, in Section 3, the testbed is described.
Section 4 discusses the syntactic analyzer and
the semantic analyzer. Sections 5 and 6 dis-
cuss the code generator as well as the inter-
preter. Section 7 discusses the index structure
and the concurrency control for the testbed.
Finally, we discuss future work in the last

section.

2. Temporal Queries: an Overview

2.1 An Overview

We first review the primary constructs
from TQuel[Sno87] which is a strict superset
of Quel, the
[SWKH76].

TQuel queries may contain valid and when

query language for Ingres

clauses. The valid clause specifies the value
of the implicit valid time attribute. The valid
at clause indicates a single time in the tem-
poral attribute while the valid interval clause
defines an interval of time as wvalid from ... to

. In the temporal attribute.

The when clause is the temporal predicate
analogue to Quel’s where clause. The tempor-
al predicate that follows the keyword defines
a boolean value. As the where clause defines
constraints in terms of the contents of the
database relation, the when clause defines
time constraints that should be met.

The temporal operators, such as overlap,
precede, extend, and equal, can determine
two time values defining an interval while
the operators begin of and end of each deter-
mines a single time. For example, the predi-
cates (a overlap b) and (a extend b) are
shown in Figure 1.

Time

——

b

aoverlap b
—_

a extend b

o

(Fig. 1) Example of the overiap and the extend

The query, "list the associate professors in
1988 and their year of promotion” may be

expressed as follows.

range of f is Faculty

retrieve (name=f.name, rank=f.
rank, salary={.salary)

valid from begin of f to end of f
where f.rank = ‘associate’

when f overlap ‘1988

This example illustrates the valid clause
and the overlap operation in the when clause.

22 Temporal Relation

To extract information out of the temporal
database, the retrieve, append, and delete
query commands are used. Queries in the
testbed have time predicates as well as the
conventional predicates in the where clause.

The examples are executed in the testbed.
The examples in this section use a temporal
relation Faculty shown below. The relation
Faculty has 3 attributes of which are explicit;

name, rank, and salary.

< Table 1> Faculty(name, rank, salary)

Cnanre rank salary || of ul ts | te
Jane assistant | 25,000 | 1971 { 1976 | 2 | o©
Jane associate | 35,000 |l 1976 | 1981 |3 | oc
Jane full 53,000 || 1981 | oo 4 | oo
Fransisco | assistant | 30,000 || 1983 [1987 | 5 | o
Fransisco | associate | 40,000 || 1987 | oo 71
Daniel associate | 40.000 [} 1988 | oo 6 | x

AR} X|# HiOJE} BiojAx 2| AT 3

The attributes vf and vt express the start
and end of the valid time. Similarly, the attri-
butes ts and te express the start and end of
the transaction time. In 1971, Jane joined the
department as an assistant professor. After
that, she was promoted from assistant profes-
sor to associate professor in 1976 and from
associate professor to full professor in 1981.
This example uses transaction number to rep-
resent the transaction time.

We show examples to generate the above

relation, Faculty.
2.3 Creating a Database

The create command is used to create new
temporal relations in the testbed. For exam-

ple, the create command,

create persistent interval Faculty
(name is char, rank is char, salary
is int)

creates a relation with the following sche-

ma.

< Table 2> Faculty Schema

L Han] rank [::/(H‘![h,',” It } l.s‘l te

2.4 Adding Tuples

To add tuples to a relation, the append
command is used. The append statement can
be used in two different formats, depending
on if a new relation is being created or not.
The append statement uses the valid and
when clauses except for adding new tuples.
For example, let’s assume that a new tuple is

added to a new relation as the following

query,

4 BRYIN2AZREY =2X| A1 B15(94. 5)

append to Faculty
(name = ‘Jane’, rank = ‘assistant’,
salary = 25000)
valid from begin of ‘1971’ to end
of ‘1975’

then, a new tuple in the new relation,

Faculty, is added above.

<Table 3> Adding s tuple

name | rank salary || tf vt s | te
Jane | assistant | 25,000 || 1971 [1976 {2 | oc |

The append command is able to be used
with valid and when clauses as shown in the
following example. Note that the valid time
of the referenced tuple is specified. The query
appends new tuples where existing tuples
have "Jane” as the value of their name at-
tribute.

range of f is Faculty

append to Faculty
(name = f.name, rank = ‘associ-
ate’, salary = 35000)
valid from begin of ‘1976° to end
of ‘1980’
where f.name = ‘Jane’
when f overlap ‘1975

The result is

<Table 4> Result from appending a tuples

name | rank salary || ¢f vl ts | te
Jane | assistant | 25,000 {| 1071 [1976 | 2 | ~
Jane | associate { 35.000 f| 1976 [1981 {3 |

This statement uses the valid and when
clauses, when there is only one tuple varia-
ble, f which is associated with an interval re-
lation. The valid time 1s effective depending

on the valid clause in the temporal query. .

e., the beginning of the year is 1971 and the
end of the year is 1976.

The when clause defines the set of tuples
that are valid at the time the year is 1975.
The relation Faculty of Section 2.2 is created

using similar append statements.
2.5 Retrieving Tuples

To retrieve tuples from a relation, the re-
trieve command is used. This command only
displays the tuples retrieved. The example
query in Section 2.1 generates the following

relation.

< Table 5> Result from retrieving tuples

nane rank selary || of vl
Fransisco | associate | 40,000 |[1987 [oo
Daniel associate | 40,000 | 1988 | co

This example uses the valid and when
clauses. The valid time clause uses the tuple
variable f that ranges over each of the
tuples of the relation Faculty. The when
clause defines the set of tuples that are valid

at the time the year is 1988.
2.6 Deleting Tuples

To delete tuples in a relation, the delete
command is used. This command does not de-
lete the tuples. Instead adds a new tuple to
the existing relation because of the non-dele-
tion semantics of transaction time. For exam-
ple, let’s delete the tuple which have name

attribute "Fransisco”.

range of f is Faculty

delete f
valid from begin of ‘1987 to end
of ‘1987
where f.name = ‘Fransisco’

when f overlap ‘1987

Then, the result from the above query is
shown below.

< Table 6> Result from deleting tuple

name rank selary || of vl 1s | te |
Fransisco | assistant [30,000 || 1983 | 1987 | 5 | oc
Fransisco | associate | 40,000 || 1987 | > 718
Fransisco | associate | 40,000 || 1988 | 8 | oo

In this example, a new tuple which has a
valid time 1988 is appended with the number
of transaction start, 8 and the number of
transaction end, 8 is inserted in the deleting
tuple instead of deleting the tuple which have

name attribute "Fransisco”.
2.7 Saving the Results

The retrieve statement normally displays its
result. In order to save them for later use,
for example, the following retrieve statement

1s used. It uses the into clause.

range of f is Faculty

retrieve into newFaculty (Name f.
name, Rank = f.rank, Salary f.
salary) valid from begin of ‘1990
to end of ‘1990
where f.name = ‘Daniel’
when f overlap ‘1990’

The relation, newFaculty, is created, and
the result of the above query is stored in the
relation.

< Table 7> Result from saving tuples
newFaculty{Name,Rank Sarary)

Name | Rank Salary || of vt s | te
Daniel | assistant | 40,000 || 1990 { 1991 | 9 {

3. The Testbed
3.1 Overview of the Structure

The testbed consists of a syntactic analyz-

ARE X C|OjEt Hl0]A 22| ALy s

er, a semantic analyzer, a code generator,

and an interpreter, as shown in Figure 2.

temporal query

estbed
syntactic
analyzer
semantic
analyzer -
_
data:
code system catalog,
-—t— .
generator execution tree,
base relation
interpretrr/] -
L

resnlts

(Fig. 2) The Testbed Architecture

The syntactic analyzer builds a parse tree
for a temporal query, and the parse tree is
then checked for correctness against the
system catalog by the semantic analyzer, as
In conventional query processing except for
time operators. If the output data from the
semantic analyzer i1s semantically correct, the
parse tree is then passed to the code genera-
tor.

We use the parse tree for the view defini-
tions to be mapped onto an acyclic graph of
nodes[HT86, Rou82b, RKS86,

Sno82], which we refer to as an execution

processing

tree, that is built by the code generator.
Finally, the interpreter evaluates the query

execution plans in batch fashion.
32 Incremental View Materialization

A base relation is an autonomous, named

¢ HRYEANIS2HY =X M1 #15(94. 5)

relation stored in the database, which is not
defined in terms of other relations[Dat867]. In
contrast, a view 1s a named relation that is
defined in terms of other relations, either
base relations or other views. Therefore base
relations are stored in the database; views
may, but need not, be stored in the database.

We choose incremental view materialization,
because incremental view materialization is
more efficient than either query modification
or recomputed view materialization if the fol-
lowing conditions are satisfied simultaneously:
(1) the number of queries against a view is
sufficiently larger than the number of up-
dates to its underlying relations, (2) the sizes
of the underlying relations are sufficiently
large, (3) the selectivity factor of the view
predicate is sufficiently low, (4) the percent-
age of the view retrieved by queries is suffi-
ciently high, and (5) the volatility of the un-
derlying relations, defined as the percentage
of tuples that change between accesses to the
view, is sufficiently low. Much work has been
done on view materialization policies [BLT86,
Han87a,Han87b, Hor85,HT86,Rou82a,Rou82b,
Sno82] .

Horwitz[Hor85], Roussopoulos[Rou82b],
and Snodgrass[Sno82] have both proposed
that a wview definition be mapped onto an
acyclic graph of processing nodes, which
Snodgrass refers to as the view’s update net.
work. The update network has the form of a

parse tree.

Similarly, we have a concept of an execution

tree with temporal function as an update net-
work. This incremental expression evaluation
by using the execution tree differs fundamen-
tally from that of non-incremental expression

evaluation. First, the execution tree, unlike

the parse tree, is persistent. It is built when
a view is defined, activated each time one of
the view’s underlying relations is changed,
and destroyed only when the view itself is
deleted from the database. Second, operator
nodes may have their own local memory and
procedures. For example, immediate results
from one activation of the tree may be
cached in operator nodes for use in the next
activation of the tree. Third, the input to,
and the output from, the execution tree is de-
fined by differentials rather than relation
states.

3.3 Operator Nodes

The following nodes may appear in an exe-
cution tree:. cartesian, select, derivation, proj-
ect, store, and display. The cartesian node,
the select node, and the project node are sim-
ilar to conventional nodes, but the derivation
node, the store node, and the display node
are different. The cartesian node computes
the cartesian product from existing which is
relations or differential of view. The select
node selects tuples satisfying specified predi-
cate from its ancestor node, but if there i1s a
single relation, the select is performed on ex-
isting relation. The derivation node computes
the valid clause and the when clause. The
project node projects from its ancestor node
depending on target elements. Finally, either
the store node or the display node is built.
The store node stores final result and the dis-

play node displays final results.

3.4 Execution Tree

The execution tree enables incremental

view materialization. An execution tree is

built by the code generator. After building
the execution tree, its nodes are activated by
the interpreter. These procedures are applied
to all nodes: cartesian product, select, deriva-

tion, project, store, and display.

4. Syntactic Analyzer and Semantic An-
ayzer

The syntactic analyzer first reads a tempor-
al query and then separates it into tokens
such as temporal constants, variable names,
keywords. Finally, the parse tree is built
from the temporal query.

The semantic analyzer not only determines
the semantics of the temporal query, but also
passes it to the code generator if the parse
tree 1s semantically correct. The semantic an-
alyzer is similar to a conventional one except
for the processing of temporal expressions.
The semantic analyzer checks the correctness
of the query with the system catalog.

The syntactic
using the lex and yacc. We choose the data

analyzer is implemented
specification language IDL (Interface Descrip-
tion Language)[Sno89] for the data structure
of the testbed, because IDL not only provides
adequate functionality for describing complex
data structures, but also can be automatically
mapped into C code by the IDL translator.
The data structure of the parse tree con-
structed by IDL is described
(Ryu91].

elsewhere

5. Code Generator

The code generator builds an execution
tree which consists of nodes depending on the
query command, as shown Fig. 3.

The terminal nodes of the execution tree,

which may be shared among several trees,

AlZh X|9 Clo[E} djojA 2| AlYCH 7

existing existing

NS

existing

AN

store/
display
L

(Fig. 3) The execution tree of the testbed

represent the existing relations. Each root
node of these trees represents a derived rela-
tion, the result of a specific query. All nodes
represent a single algebraic operator, such as
project, per-
formed to support temporal query.

cartesian, select, derivation,

Fig. 4 is a summary of the code generator.

All nodes of the execution tree except for
the store and display node are built for all
query commands. The display node is built
for retrieve statements with no into or to
clause, but the store node is not. Therefore,
the display node is only for displaying attri-

butes. Each node contains pointers to their

s Y2 RS =2 M13 H1%(94.5)

descendents and information about each of
their descendents in the execution tree. Also,
operator nodes in the execution tree contain
data structures for holding their input rela-
tion state(s). The relationships between nodes
with pointers to descendents and information
in terms of these descendents are represented

by an acyclic graph.

codegeneration

{
/* Add all tuple variables reference in the current
retrieval statement being processed to the list of
active tuples. */ ,

. find_tuple_variables(*currentStmt.thetupleVars),
/* Determine the number of active tuples in this
retrieval statement. If only one tuple variable is
active, no cartesian opcrator nodes are needed:
otherwise, a carfesian opurator binary sub_tree
must be constructed. */

totaltupleVars = 0:
foreachinSETt uble\';\rl(cii (*thetupleVars)->
active_tupleVars. SAtupleVarRef. AtupleVarRel:

totaltupleVars = totaltupleVars + 1
if (totallupleVars == 1)
build _existing
else
build_cartesian_subtrec /* build cartesian node
for two or more existing
relation */

build _select.node
build _derivation.node /* build derivation node
for a valid and when
clause */

build_project node /* build project node for

N

extracting attributes */
if ({typeof(*ruarromsumey == Kyvoid Retrieve)

I| (typeol(*emrrentStmt) == KungqueRetrieveyi

build _displiay _node

baild _store_node

(Fig. 4) The structure of the code generator

An existing node which is a relation or a

differential has not only a relation extracted
from the database, but also information in
terms of descendents. If there is a single rela-
tion, a descendent points to select node, oth-
erwise it points to cartesian node.

If two or more relations exist, a cartesian
node is created. The cartesian node will have
information in terms of the tuples and a
pointer to its descendent node. A descendent
of the cartesian node contains a select node.
Similarly, the select node, derivation node,
and project node each has information in
terms of its descendent. If a single relation

exists, a select node is built for executing se-
lect operator from existing relations because

a cartesian node does not need to be created.
Whereas, if existing relations are two or
more, one or more cartesian subtrees are con-
structed for all existing relations, and the se-
lect node is built for extracting results from
cartesian node. Other nodes, i.e., select, deri-

vation, project, are built for all commands.
6. Interpreter

The interpreter processes tuples from one
or more relations from a restricted subset of
temporal queries. A forest of execution trees
for representing the temporal query is a data
structure built by the code generator. Input
to the interpreter is the set of tuples to be
processed and the execution tree representing
one Or more queries.

The testbed supports the temporal retrieve
statements such as void retrieve, retrieve
with an unique clause, and retrieve with an
into and to clause, without aggregates. The
retrieve statement does not change contents
of tuples but only display query results. The
testbed also supports versions of the append

and delete statements. On each change to a
base relation, the interpreter activates the ex-
ecution tree, where ancestor nodes in the exe-
cution tree cause the activation to be propa-
gated to its descendent nodes. A command
which be argumented by nodes consist of up-
date specification and relation. The update
specification has a before image and an after
image of tuples. These form differentials of
the existing relation.

For each operator node in a path of execu-

tion tree, the interpreter processes as follows.

Visit each algebraic operator node that
is a descendent of the existing relation
nodes, and then add to each visited
node the addresses of the procedures

that will be used for algebraic operator
processing.

Find the existing relation node associat-
ed with the tuple just input.

Pass the tuple just created to all descen-
dent nodes of the existing relation node

associated with the node just executed.

After this procedure, the result produced
by the interpreter may be saved into the new
relation or displayed.

The existing relation is extracted from a
database relation. One or more existing rela-
tions can exist depending on the number of
tuple variables, but the same existing rela-
tions are not reconstr wted. Therefore, the in-
terpreter may make a differential from the
existing relation. Cartesian product operations
are computed for two or more existing rela-
tions, and then new tuples are produced. The
select operation then selects tuples from the
new relation by using where clause predi-

cates, and then the derivation operation se-

AR Xi# CIOJEL Hoj~ H2| Al 9

lects according to when and valid clause tem-
poral predicates. Extracting one or more tar-
gets are evaluated by the project operation,
and at this point, all operations are complet-
ed, except for the store and display operation

for storing and displaying the information.

7. Index
Control

Structure and Concurrency

Now we describe the index structure and
the concurrency control working on going
job. The testbed should manage memory
resident data, and the different access meth-
od, commit processing, data structure, and
concurrency control and recovery should be
considered.

The temporal database have been designed
segment index and SR tree[TCG+93], the
time index and the
[EWK90], and proposed several different
storage structure{ Ahn86]. A wide variety of

monotoic B+ tree

index structure has been proposed for main
database [LC86,DLO+84,WK90].

However, all they did not give any answer

memory

for the main memory of the temporal data-
base. They have only given the one side of
the answer.

We are designing two different index struc-
tures in the testbed. One is for current data,
which is that data values on which the index
is built need not be stored in the index itself,
as is done in like B trees. Another is for his-
torical data, which is that data values on
which the index is built from historical data.
The reason is that the current data should be
accessed frequently, but the historical data
should be not.

The concurrency control should be consid-

ered non two phase locking protocol because

10 BRFYRX2ISEYAY =2X M1 H15(94. 5)

the temporal databases have non-deletion pol-
icy which means that all transactions can not
delete their record, and the concurrency con-
trol should be simplified from conventional
one, although they are main memory data-

base.
8. Summary and Future Work

The TDBMS testbed in main memory sup-
ports valid and transaction time. The testbed
consisted of a syntactic analyzer, a semantic
analyzer, a code generator, and an interpret-
er. The syntactic analyzer builds a parse tree
for a temporal query and the semantic ana-
lyzer then checks correctness of the parse
tree against the system catalog. The code
generator builds an execution tree termed an
update network as an acyclic inverted tree.
We defined the following operators: a carte-
sian node, a select node, a derivation node, a
project node, a store node, and a display
node. The execution tree contains these nodes
and uses for incremental view materialization.
After building the execution tree, the inter-
preter activates each node of the execution
tree according to the select, valid, and when
clause in the temporal query. The procedure
for executing the interpreter is: first, read
the execution tree which is a forest of invert-
ed algebraic operators and second, visit each
algebraic operator node that is a descendent
of the existing relation nodes, and then add
to each visited node the addresses of the pro-
cedures that 1s used for algebraic operator
processing. Third, find the existing relation
node associated with the tuple input and fi-
nally pass the tuple just created to all de-
scendent nodes of the existing relation node

associated with the node just executed.

According to the command, the results
evaluated are stored in the store or display
node. Also, example queries were given to
show the execution of the testbed.

The interpreter should be argumented to
activate the execution tree of the database
whenever a base relation should be changed.
Also, intermediate relation states for nodes In
the tree are stored between activations of the
tree. If the defimtion of an incrementally
maintained materialized view is mapped onto
execution trees, these view execution trees
are integrated into a single execution tree for
database. These features with the view defini-
tion command will be included in future
work.

We did not consider an archival manager
using high capacity WORM technology, for
the TDBMS testbed. In the future, we will
condider WORM storage like optical disk for
historical data. The interaction between a
cache manager and an asynchronous archive
manager in new storage structures will be

also studied in the future.
9. Acknowledgements

The initial system was 1mplemented by
Edwin McKenzie and Vikram Debashish. The

author wishes to thank Richard Snodgrass
for his valuable suggestions and encourage-
ment. Dr. Richard Snodgrass is a leader of
TemplS project. The part of this paper was
written while the author was working as a
member of TemplS project at Department of
University of

Computer Science of the

Arizona.
References

[AHK85] A. Ammann, M. Hanrahan, and R.

Krishnamurty. Design of a main
resident DBMS. In Compcon, pages 54-
57, 1985.

[Ahn86] I.LAhn. Performance modeling and
access methods for temporal database
management systems. Ph.D Thesis, Com-
puter Science Dept., Univ. of North Car-
olina at Chapel Hill, Aug. 1986.

[Bit86] D. Bitton. The effect of large main
memory on database systems. In Proc.
of ACM SIGMOD International Confer-
ence on Management of Data, May 1986.

[BLT86] J. A. Blakeley, P. A. Larson, and
F. W. Tompa. Efficiently updating ma-
terialized views. In Proc. of ACM
SIGMOD International Conference on
Management of Data, May 1986.

[Dat86] C. J. Date. Relational Database: Se-
lected Writings. MA: Addison—Wesley,
1986.

[DKO+84] D.J. DeWitt, R.H. Katz, F. Olken,
L.D. Shapiro, M.R. Stonebraker, and D.
Wood.
main memory database systems. In Proc.
of ACM SIGMOD International Confer-
ence on Management of Data, pages 1-8,
Jun. 1984.

[Eic88] Margaret H Eich. Main memory da-
tabase research directions. Technical Re-
port TR 88-CSE-35, Computer Science
and Eng. Dept., Southern Methodist
Univ., Nov. 1988.

[EWK90] R. Elmasri, G. Wuu, and Y. Kim.
The time index:an access structure for
temporal data. In Proc. of the Confer
ence on Very Large Database, Aug. 1990.

[Hag86] R.B. Hagmann. A crash recovery
scheme for a memory-resident database

Implementation techniques for

system. IEEE Trans. on Computer, 35
(9):839-843, Sep. 1986.

(Han87a] E. N. Hanson. Efficient support for
rules and derived objects in relational
database systems. Ph.D Thesis, Comput-

AR X|¥ cllolEt tojx m2| AlECH 11

er Science Dept.,, Univ. of Californma,
Berkeley, 1987.

[Han87b] E. N. Hanson. A performance anal-
ysis of view materialization strategies.
In Proc. of ACM SIGMOD International
Conference on Management of Dala,
pages 440-453, May 1987.

[Hor85] S. B. Horwitz. Generating language-
based editors: A relationally-attributed
approach. Ph.D Thesis, Computer Sci-
ence Dept., Cornell Univ., Aug. 1985.

[HT86] S. B. Horwitz and :T. Teitelbaum.
Generating editing ,enviro"n_ment based
on relations and attributes. ACM
TOPLAS, 8(4):577-608, Oct. 1986.

[Jen90] C.S. Jensen. Towards the realization
of transaction time database systems.
Ph.D Thesis, Computer Science Dept.,
Univ. of Maryland at College Park, Dec.
1990.

[LC86] T. J. Lehman and M.J. Carey. A
study of index structures for main mem-
ory database management systems. In
Proc. of the Conference on Very Large
Database, pages 294-303, Aug. 1986.

[LC87] T. J. Lehman and M.J. Carey. A re-
covery algorithm for a high-perform-
ance memory-resident database system.
In Proc. of ACM SIGMOD International
Conferenceon Management of Data, pages
104-117, May 1987.

{LHM+86] B. Lindsay, L. Haes, C. Mohan,
H. Pirahesh, and P. Wilms: A snapshot
differential refresh algorithm. In Proc. of
ACM SIGMOD International Conference
on Management of Data, pages 50-60,
May 1986. .

[LS89] E. Levy and A. Silberschatz. Log-
driven backups: A recovery scheme for
large memory database system.
Research Report TR-89-24, Computer
Science Dept., Univ. of Texas at Austin,
Sep. 1989.

12 HRYEAR SR =X M1 A 1%(94. 5)

[McK88] E. McKenzie.
guage for query and update of temporal
databases. Ph.D Thesis, Computer Sci-
ence Dept., Univ. of North Carolina at
Chapel Hill, Sep. 1988.

[MS89] E. McKenzie and R. Snodgrass. An
evolution of algebras incorporating time.
Technical Report TR-89-22, Computer
Science Dept., University of Arizona,
Sep. 1989.

[RK86] N. Roussopoulos and H. Kang. Prin-
ciples and techniques in the design of
ADMS. IEEE Computer, 19(12):19-25,
Dec. 1986.

[Rou82a] N. Roussopoulos. The logical access
path schema of a database. IEEE Tran.
on Soft. Eng., 8(6).563~573, Nov. 1982,

[Rou82b] N. Roussopoulos. View indexing in
relational databases. ACM TODS, 7(2):
258-290, Jun. 1982.

[Ryu91] K. Ryu. A temporal database man-
agement system main memory proto-

An algebraic lan-

type. TemplS Technical report, No. 26,
University of Arizona, Jul. 1991.

[SA86] R. Snodgrass and 1. Ahn. Temporal
databases. IEEE Computer, 19(9):35-42,
Sep. 1986.

[SG89] A. Segev and H. Gunadhi. Event-
oin optimization in temporal relational
databases. In Proc. of the Workshop on
Query Optimization, pages 205-215, Aug.

1989.
{Sno82] R. Snodgrass. Monitoring distributed
systems: A relational approach. Ph.D

Thesis, Computer Science Dept., Carne-
gie-Mellon Univ., Dec. 1982.

[Sno87] R. Snodgrass. The temporal query
language TQuel. ACM TODS, 12(2):247
-298, Jun.1987.

[Sno89] R. Snodgrass. The Interface Descrip
tion Language: Definition and use. Rock-
ville, MD:
1989.

Computer Science Press,

[So091] M.D. Soo. Bibliography on temporal
databases. ACM SIGMOD Record, 20(1):
14-23, 1991.

[Sto87] M. Stonebraker. The
Postgres storage system. In Proc. of
ACM SIGMOD International Conference
on Management of Data, pages 289-300,
Sep. 1987.

[SWKH76] M. Stonebraker, E. Wong, P.
Kreps, and G. Held. The design and im-
plementation of Ingres. ACM TODS, 1
(3):189-222, Sep. 1976.

[TCG+93] A. Tansel, J. Clifford, S. Gadia,
S. Jajodia, A. Segev, and R. Snodgrass.

design of

Temporal Databases. The Benjamin/Cum-

mings Publishing Company, Inc, 1993.
[WK90] K. Y. Whang and R.

Krishnamurthy. Query optimization in a

memory-resident domain relational cal-
culus system. ACM TODS, 15(1):67-95,
1990.

A F E
19933 FHoistw A=z}AH A}
29
1993 FHdistm ojtd
Hay HapAlsbeAdg A Al
Aok A7k dlo|elu o]
2, AlF7L dleleluo] s, A

BAA, Helv|do]

A+ %
1993 FAbcHstm A apA4be}
3} &4
1993+ N3ty o3t
2l AzpA AT M apa
Al Eol : A|7bAl4 d)o]elof
22, AlFE7Y dlojefuo] &~

3 3

1988'd 8oiek HAEAS
3 24

19931 38t jetel Az}
A Akt (o] 8aia})

1993 3%ojetm ofetel

QA WAALES whabahy

FAlEok 1 AZHAY dlojeblo]
&, 2137 dolehmolz,
CER]

A5
19839 -FFAlatdta 29
19873 Agohigtm AEAS
24
1992+ $-Hoiztw of3d
A "zpAsbeta AAla Ay
ARl A7k Y dlo]eluo]
2%, 2137} dlolelulo] 2~

ARE X|¥ Cllo[E} Bo]2 R2] AJEE 13

=]
F < 2

1976 d W At &4

1980 AAMT FAoid A
AAF(FNAL)

1988 MY ity HAA
F(FgaA})

1976\ ~1986'd & 5 A
fA AFH(ROTCH R), &
T AR B ATa(dT
), &3 I FAG AU} 2nF) 27

1989'd ~1991'd Univ. of Arizona ¥¥4

19863 ~ ¥ 2¥UYR AFeHHS3} Bl

ARk AZEA Y dlojeldfol, AFTE dlojebuo]
2, DBMS 9 06, 23 g AAWoj2 A2¥ 54

