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Connectivity of X-Hypercubes and Its Applications
~vung Hee KWON' and Si-Qing Zheng™

ABSTRACT

‘vz imterconnection network, X-hypercubes, has the same number of nodes
and edges &s corve=tional hypercubes. By slightly changing the interconnecton way between
nodes, however. h-ypercubes reduces the diameter by almost half. Thus the communication
delay in X—hypercuzes can be expected to be much lower than that in hypercubes.

This paps- g£ves = new definition of X-hypercubes establishing clear—cut condition of connec-
tion betweew two moces. As application examples of the new definition, this paper presents sim-
ple embedéings ¢f =ipercubes in X-hypercubes and vice versa. This means that any programs
written for hvpercutes can be transported onto X-hypercubes and vice versa with minimal over-
head. This pepsr =0 present bitonic merge sort for X-hypercubes by simulating that for

hypercubes.

1. Introduction

Nany multi-processor omputers have been
proposed over tne last Zzcade. Among these,
the hypercube machins :as been recognized
as cne of the most impo—ant parallel comput-
ers due to its high-bencwidth, logarithmic di-

ameter and regular iopIogical properties. In
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particular, many of other networks can be
embedded in it.

Recently a slightly modified hypercube net-
work called X—hypercubes was introduced [4].
X-hypercubes have tle same structural com-
plexity as conventional hypercubes, ie. a n-
dimensional X-hypercubes has the same num-
ber of nodes, and the same number of links
per nodes as hypercubes, but the diameter of
a X-hypercubes is about the half of the
paramter of hypercubes of the same dimen-
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sion. This implhes that X-hvpercubes have the
advantage over hypercube when data commu-
nication is of major concern, especially under
the condition of improving the system’ perfor-
mances without or with a little increase in
the system costs. Indeed, as shown in [7],
the data broadcasting and census operations
on a X-Hypercube takes about half of data
communication steps of the same operations
performed on a hypercube.

It is well known that for multi-processor
systems, the data communication cost domi-
nates the computation cost. Therefore, it is
worthwhile to make comparative studies on
hypercubes and X-hypercubes, and explore the
advantages provided by X-hypercubes.

When a hypercube machine of dimension' is
abstracted as a graph, processors are treated
as vertices and data links are treated as
edges, where each vertex is given a umque
label and the connectivity between vertices
can be easily determined by inspecting the la-
bels associated with vertices. In contrast, X-
hypercubes are less regular. In fact, the origi-
nal defimition of X-hypercubes appeared in
[4] is not so formal. In [7], a formal defini-
tion of X-hypercubes is introduced. However,
this definition does not provide explicit condi-
tions for the connectivity of wvertices. The
analysis of the algorithmic aspects and topo-
logical properties of X-hypercubes in [7] are
based on a notion array arrangement of ver-
tices, which i1s used to derive the connections
addition to the

between  vertices. In

inconvinience, finding the connections by
using the array arrangement involves comput-
ing exponents.

_ Compared to hypercubes, one of major dis-

advantages of X=hvnercubes is the fact that it
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15 hard to use due to its more complicated
connectivity than that in hypercubes. In this
paper, we give an alternative definition for X
—hypercubes. We show that using this defini-
tion, the connectivity between any two vertl-
ces in X-hypercubes can be easily determined
by scanning the labels of the vertices. We
also show how to use this defimtion to imple-
ment simulations between hypercubes and X-

hypercubes.
2. Definitions of X-hypercubes

A n—-dimensional X-hypercubes, which is de-
noted as QI, is a graph of 2" vertices. To
simplify our presentation, we define the n-di-
mensional companion X-hypercubes, denoted
as QS in parallel with @7 Each node in or
QRC is labeled by a distinct a-bit binary num-
ber in B, by which we denote the set of all
possible 2-bit binary numbers b.b.—i---b). We
use # to denote the concatenation operation
on two binary numbers, i.e., for two binary
numbers b; and bs, b3 by is the binary num-
ber of | &, | + | bz| bits obtained by concat-
enating them, where |b| is the number of
bits in b. We use b# B, to denote the set
of binary numbers obtained by concatenating
the binary number b with all numbers in B,
ie. b B,={V | b’ =B,}. The formal recur-
sive definition of QT (and Q%) given in [7]

15 as follows:

Definition 1:

Qf = (v, E]), where
yT =10, 1): and
ET = {[0.11L
0f = (vf, Ef) is identical to Q7.

For n» | and nis odd,
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for n > 1 and n is even,
QT = (VI En ), where

VI = Baoand

ET = {[0¢1,.050,] {ve. v, € Booy and Lo v)) € Enal
Wil p, 176 oo v, € Beo g e ] € ESD)
U001, 102 v, [0l ¢ 118 )] e, 1) & Bt

and 1 = ).

Qf = (v EE ). where
12 B oand
ES = {l07c, 080 readen,) v, v € Bay and
{u., v € EL)
U TL00z b, 102 0 ], [0l ¢, 105 6] v v € B

and v, 2 ).

In figure 1 and figure 2, we show several
hypercubes and X-hypercubes of low dimen-
sions. For reasons that will soon be apparent,
we define a finite state automata A.= (5, B,
T, q0, F), where S={T, T, Cs C,) is the set
of states in A, B={0, 1} is the input
alphabet; qu is the initial state (go=7T, if n is
even, and Ty if n is odd); T is the transition
function SxB, and F=S is the set of final
states. The transition function T is defined in
the transition diagram shown in [igure 3.
One additional constraint on A. is that the bi-
nary strings that can be accepted by A, have
length no longer than n. We define prefix(n,
v;d) as the substring of v obtained by delet-
ing the rightmost d bits of = We say that
prefix(n, v;d) is of type Tc (resp. To, Cc and

C.) if by left-to-right scanning prefix(n,v;d)
the state T, (resp. To, C. and Go) of A, is
reached after n—d state transitions. For two
distinet binary strings u=u,u.---w and v=0.
vo -1, we define d(nuv) as the maximum
i such that u.suw

Definition 2:

X-hypercube of dimension n is a graph with 2
" vertices, each is labeled by a distinct n-bit
binary number, and any two vertices u= u,i,
- and =00, are connected by an
edge if and only if one of the following two
conditions holds:

(1) prefix(nu;d(nuv)) is of type C,

Uen woyldin w)=1 — Udln u 1) m and w
=y for i=d(nuv), and i+d(nuv)a—
13

(2) prefix(n,u; d(nuv)) is not of type C. u

=y, for+d(nu,w).

To verify the equivalence of definition 1
and definition 2, let us look closely at the
structure of X-hypercubes. For @I, we called
the subgraph induced by a vertex subset {bb,
_1o-By | Bobao1®*+busi = CaCa—1***Cav1), WhHETE  CaCn-t
ietzey s a constant and 1 =d<{n, as a d—-di-
mensional subcube of Q1 . Clearly, Q@Y s
recursively defined by its subcubes. We say
that a d—dimensional subcube of @ I induced
by a vertex subset {bubp—1+by | bibaro-ber1=Cx
Cor---Can1} is of type T«C) if by looking at
the d least significant bits of the labels, the
connections of vertices satisfy the definition
of @ T(Q ) and d is an even number. Simi-
larly, we define types T, and C. of d-dimen-
sional subcubes of QI. Note that the only dif-
ference between T, and T C, and C.) is that
d is an odd number for T.(C,). Directly fol-

lowing definition 1, we know that twa verti-



ces u and » of @1 are connected by an edge
if and only if they are connected by an edge
in the subcube of the smallest dimension that
contains both of u and v Thus, the problem
of deterrﬁining whether or not u and v are
connected is reduced to determining whether
or not they are connected in the smallest
subcube containing them.

It is easy to see that d(nuv) Indicate the
dimension of the smallest subcube of @T that
contains u and v, and the type of prefix(nuv;
d{nur)) tells the type of such a subcube. By
definition 1, we conclude that

Theorem 1:
Definition 1 and definition 2 for X-

hypercubes are equivalent.

It should be pointed out that the type of
prefix(n,u;d) can be effectively computed
using A, To determine the type of prefix(n,
u;d), we need to scan u=u.u,—-w from left
to right and make n-d state transitions in A,
. The automata A, together with the notion
prefix(n.v;d), is not only useful for determin-

ing whether or not two veriices in QT are

connected by an edge, it can also be used ef-

ficiently solving the following decision prob-

lems:

(i) Given a vertex u In QT , determine
all its adjacent vertices in Q;

(i) Given a vertex u = u,l,—1°*-2i in Qr
determine the vertex v= v,v,—--u that
is connected to u such that u;= v for
nzi>d and ws=* v and

(iii) Given a vertex u in Q. , determine
the types of all subcubes of @ that

contain u.

X-Hypercubes 2| HHME O S8 95

All these operations are useful for imvesti
gating the algorithmic aspects and
combinatoric structures of X-Hypercube ma-
chines. For example, we may define an edge
connecting two vertices u = w,— -+t and v
=y, w in @ such that w=1wv for nZzi
>d u, as a d-dimensional edge of Q. The op-
eration (ii) can be used to find all d-dimen-
sional edges of QT . The above lsted opera-
tions are very useful for divide-and-conquer
paradigm for designing efficient parallel algo-
rithms on X-Hypercube machines, as indicat-
ed in the

previous investigations on

conventiional hypercube machines.
3. Application Examples

In this section, we show how the new defi-
nition can be used to derive results in the
computational aspects of X-hypercubes and
conventional hypercubes. Firstly, let us consid-
er embeddings between hypercubes and X-
hypercubes.

Let G and H be two simple undirected
graphs. An embedding of G in H is a one-to-
one mapping of the vertices of G into the
vertices of H, together with a specification of
paths in H connecting the images of the end-
points of each edge in G. The dilation of the
embedding is the maximum length of these
paths in H and the congestion of the embed-
ding is the maximum number of edges of G
whose corresponding mapped paths in H in-
clude a single edge in H. Graph embeddings
can be used for a model simulating one com-
puter architecturse by another. The parame-
ters dilation and congestion are used to mea-
sure the efficiencies of such simulations. The

following algorithm embeds Q. into Q.
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procadure FHBEIN Q. a3
for every edge ix, v] do
d=dinxyi
if the type of prefix(n x.d) is ¢, then
case { xoxg-1, yaorat] of
{00, 10) ! Za%es = OL:
{01, 11] ¢ Fazgr = 100
endcase
let s, = x; for i ®d and i 2d-1:
asociate [x.z) and [z.y] in @3 with [x,y] in Qu:
else
associate [x.y] in QF with [x.y] i Qu
endif
endfor
end EMBED]

For epbedding Q.Z‘ into a (-, we give the foliewing algorithm:

procedure EMBEDZ( QI Q.)
for every edgr ix. y] do
d = din.x v):
if the type of prefixina.d) is (. then
cage { x.te 1 ¥ove:) of
{01, 10} : Fere-r = OO
{00, 11} Fareo = 10
endcaze
letz, =x, for 1 =d and i ®d-1-

aseciate [x.z] ané {2 ¥1 in @ vith iv,y] 1n o1
else
associate [x,v] in @- with [x¥] in QZ:
endif
endfor
end FMAELRZ

Theorem 2 : @. can be embedded into Q]
with dilation 2 and congestion 2 and @7 can

be embedded into @, with dilation 2 and con-

gestion 2.

Proof:

Since the proof for two parts of the theorem
are similar, we only give the proof for the
first part, i.e. Q. can be embedded intoQ}
with dilation 2 and congestion 2. Obviously,

the embedding constructed by algorithm
EMBED1 is of dilation 2. By algorithm

EMBEDI, we know that any d-dimensional
edge in Q. is either mapped to the edge m
QT connecting the vertices with the same la-
hels, or mapped to two d-dimensional edges
in a d-dimensional subcube of type C.of Q1
that contains x and » Thus, we only need to
consider mappings of d-dimensional edges [x,

v] to d-dimensional edges. The edge [uv] in
T

nt

where usug-, =01, Vgtge1 = 10, and U=u;

for i=d and 1=d-1. 15 used exactly twice
in the embedding, and the edge [z, v] in QF
, where u,=0, v,=1, and u=uv for i=d, is
also used exactly twice in the embedding.
Therefore, the congestion of the embedding
constructed by algorithm EMBEDI is 2.

By theorem 2, we know that any algorithm
on hvpercube machines can be implemented
on X-Hypercube machines with the same per-
formance. For example, sorting 2" numbers
on a n-dimensional hypercube machine re-
quires O(n") time. This can also be achieved
onn a n—dimensional X-hypercube by simula-
tion shown below. The symbol & denotes such
a communication of a data item from an
adjacent processor’s local memory into the

active local memory.

procedure BITONIC MERGE SORT
for i=0 to n-1 do
for j=i downto 0 do
d=2+%
for all P where 0 £k < 2°-1 do
if k mod 2d <{d then
if prefix(n, k:j*1) is of type (. then
q=2"":
Lieq += Qk-d*
Ly o= Licmgt
else
Li &= Qi-d+
endif
if k pod 272 < 27! then
bi=pax{ tx. Qx):
ai=minl te, ax):
else
bx=min{ tk, ak):
as=pax{ Lk, ax):
endif
k mod 2d 2d then
if prefix(n, k:j+1) is of type C. then

h

i

endfor
end BITONIC MERGE SORT



4. Concluding Remarks

We presented an alternative formal defini-
tion for X-hypercubes. As the definition of
conventional hypercubes, this concise defini-
tion explicilly provide the conditions of con-
nectivity of vertices. As examples, we showed
how to derive simple proofs of some known

results on embeddings between hypercubes

g8
EoOc— O AD—A)

a) 3-dimensional hypercube

S
O N DA

b) QF

c) QF

(Fig. 1) 3-dimensional hypercube, @1 and Q%
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and X —hypercubes. We also showed how to
use the connectivity conditions given in the
definition to express the bitonic merge sort
algorithm for X-hypercubes. We believe that
this new definition will be very useful for
further research in the parallel computation
on X-Hypercube interconnection networks

and multi-processor computer systems.
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c) QF
(2. 2) 4-dimensional hypercube, Q7 and @

PN v o~
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(Fig. 3) Automata A,

References

[ 1. Bhuyan, L.X and D. P. Agrawal, ~Gen-
eralized Hxpercube and Hyperbus struc-
tures for a Computer Network”, IEEE
Transactions on Computers, Vol. ¢-33,
No. 4, pp. 323-333, April 1984.

[27 Knuth, D., "The Art of Computer Pro-
gramming, Vol.3, Sorting and Searching”,
722 pages, Addison Wesley, 1973.

[31 Quinn, M.J., "Designing Efficient Algo
rithms for Parallel Computers’, 288

pages MeGraw-~Hiil,1887.

[4] Sung, Y.Y, "X-hypercube. A Beller In-
terconnection Network”, Proc. 26th Annu-
al Southeast Regional ACM Conf., pp.
557-561, 1988,

[57 Saad, Y. and Schultz M. H., "Topologi-
cal Properties of Hypercubes”, IEEE
Transactions on Computers, Vol. 37, No.
7, pp. 867-872, July 1988.

[ 6] Ullman, J.D., The Computational Aspecis
of VLSI, 495 pages, Computer Science

Press,1084.
[ 7] Zheng, S.-Q., "Data Droadcasting and
Census Algorithms for Twisted

Hypercubes® Technical Report #89-011,
Dept. of Computer Science, Leuisiana
State Univ.,,1989.

A 3 3
1976+ maciste E=i4s &
o (84h)

198633 Old Dominion Univ.

Computer Science Dept.
(M5
1991'd  Louisiana  State

Univ. Computer Science

Dept. (PL.D.)

1979~1984%1 =ratedd7 4 274

1992x ~ Ja) ) atm HAAEtet A 4d7da)

FARel: Y g Fa A=, daalE BY L 4A,
HEY=

Zheng Si-Qing

19733 F= AYoheha AAF
=t 2« (34

1982 Univ. of Texas, Dal
las Mathematical Sience
Dept. (M.S.) '

1987+ Univ. of California,
Santa Barbara Computer
Science Dept. (Ph.D.)

1987~1993'1 Louisiana State Univ. Assistant
Professor

19931 ~da) . Lowsiana State Univ.  Associate
Professor

FABol: V.ILSI, Computational Geometry, Wa
ol B4t Ae], YEHE




