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A formal Definition of Semi- Join Based
Reduction Method of Petri Nets

Jongkun Lee'

ABSTRACT

A functional reduction method of Petri nets is proposed. The method is based on interpretation of
relations and transitions with functions which map one series of a relation to angother. In particular, we
propose CF—oin which combines two transitions to new one after reduction of the common places, CE—
om which superpose two transitions to one after superposition of the common places, and EQ—join which
reduces the common places, after the Petri nets were explained by a relational scheme. A reduced net

can be obtained without changing the properties such as liveness and boundness.

1. Introduction

Petri nets are graph models usefuls for
analyzing and modeling the system which has
concurrent characteristics, like paralledl system,
communication protocol and etc. The main
advantage of Petri nets consists of the possibility
of proving formally some desirable properties
such as livenessboundness or reversibility[5].
However, recently, these systerns have become
large and complex, which makes it difficult to
analyze systems.

Most of the reduction methods[l, 2, 4, 7, 8, 12,
14, 15] for solvong complex problems of Petri
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nets focus on developing rules for combining
several nets with some very specific rules of
refinement or compositions, without changing
certain properties. This approach has produced
synthesis  technigue which allows to build
impressive example. It has been found that no
characterization of the expressive power of the
technique 1s given[5). One of possible solution to
this problem is the formal definition of which
rules should be used to obtain all and only the
well behaved model of a certain class. Actually,
the transitions can be agglomerated into new
one, with an equivalent interfaceafter the
reduction of common places between them. In all
the classes defined in literatures, it is likely that
the operation of the reduction has a similar result



to the composition of two functions and to the
join of two relations in therelational database[21,
227. If Petri nets are explained by a relational
from like a relational database, we could use
composition or join concepts for combining nets.

In this study, we propose a functional
formalism which is based on an
interpretation of the query and relations as
functions which map one column of a relation to
another column. The basic idea is that a relation
instance maps from a set of output places of
transition in Petri nets to the corresponding set
of input places in adjacent transition. Then we
use this functional formalism to select two
pinable transitions and to agglomerate two
transitions into one by the reduction of common
places. Ordinary Petri nets[11] are considered in
this paper. ‘

This paper is organized as follows. In section
2, the functional view of relations for the
reduction process is introduced, In section3, some
definitions of the Petri nets are given. In section
4, the reduction rules which combine two
transitions into one by reduction of common
place and which reduce the common places are
proposed. In section 5, the properties of the Petri
nets and a reduction algorithm are given. We
demonstrate an application of these rules to a
version of the ECMA protocol and we also
compare our reduction rules to other approaches.

2. Relation and Transitions as Functions
2.1 Functions defined by a redation

Let V be a finite set of attributes {A1l,A2,--,
An). Each attribute Ak has a finite domain dom
(Ak)={pl,--pm}. R(V), the scheme over V, is
the set of relations on Al, AZ.-An “r’(also
called an instance) is an element of R(V), ffCr
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AlxA2x---xAn. An element t of r is a wple t=
(al,--an) with aiedom(Ai), t[I] denotes the
projection of t on I, subset of V, t&[1n].

Definition 2.1:Functional dependency on a
scheme R

Let I ,J be two subsets of V. Then there is a
functional dependency I—>J on R(V), iff for
each r of R(V),Vtlt2<r such that t,[I]=t[1] &
[J1=tlJ1

A function t from R[I] to R{J] is defined by
each instance r of R(V) with I—>J as follows:
for each ter t{J} = fQ[I].

“f" is uniquely defined since two tuples that
are equal upon I, are also equal upon J. This
function is not necessarily a total one.
¥ I={A)---A%), { is not defined on all values
of A"y x---x A’ [ is only defined on those values
belonging to r[1].

Definition 2.2 : Relational
short)
let us denote R(V): I—>>J, the functions
defined by all nstances r, maps from R[J] to R
[J], where the scheme R(V) obeys a functional
dependency 1—>>J. These functions can be
characterized by couples (xy) (such that y=f
(x)) defined as follows: )
{xy) | terreRMW)AI]=x [J] =y},
also we can show that as follows:
{x¥}=( Woa-(R(V))),
where is a projection formular form and o is a

function(RF, for

selection formular form in R.

If I(resp J) is a singleton (set with one
element i(resp j)), we shall use the notation R
(V):ii—2>] instead of R(V)i-=i when no
confusion arises.

Examples:
Let R(V):1—>2,with V={A1A2}, then we get:
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Al Al
pl P3
pi el
p2 ps

R(V):1—>>2(pl)={(pl,pl),(p3,p4)}

R(V):1—2>2(p2)={p2,p5},

A relational tableau has a (fixed) number of
columns, called attributes and a number of rows,
called tuples. The domain of the ith column of
the tableau, corresponding to an attribute Ai
To simplify our works, we consider all relations
which have only two atiributes, ie. R(V), with
V={AlA2}.

For any one tuple v in V, if it has
multivalues, such that | dom(w[A]) | >1,(1=
1=2), then it called the partial tuples, and iV |
dom(v,[A]) | =1, then called the total tuple.

Fxample:
Let R(V), with V=(AlA2}Lior any one tuple
v1,v2 in V then:
1) partial tuple:
if v1I[Ail={pl,p2,p3}, vi[A-]={pl,p2}
2) total tuple:
if Vz[A1]={D1}, vl Az ]={p2}

Al Al

plp2p3 plp2

v

v2 | pl p2

22 Composition of relational function

Let f1A—>B and g:C—>D be two functions.
If the image domain of f is a subset of the
domain of g, then the compesition g@®f, of the
two functions can be formed where g@f: A—>
D is defined by g f=g(f(x)) for all xeA. The
image domain of g@®f is thus a subset of the
image domain of g[10, 18, 19]. We give next
"definition  corresponding to the idea of the

composition of RFs.

Definition 2.3 : Composition of two RFs

Let S(V)i—sam, with V={A1A2}, T(W):1—>2,
with W={B1B2} be two RFs. For any two
tuples ty in V, and t, in W, then a composition
BV 1->2@T(W):1~>2) is defined as:

+ dom(8(V) 1122 @T(W) {52
{x=dom(t:i[A2]) | (dom(t:[B,]) Sdom(t,[A
1)V (dom(t[B,]) 2dom(u.[A;])))

< S(V)I1-220)T(W) 11 —2>2=T(S(V)):
(dom(t:[A;]) Udom(t.{B,])) — (dom(t.[ A;])
dom(t[B:]))

- dom(h]:Az])Udom(tx[Bz]))—(dom(t;[A
21) dom(t:[B,1))

(x:(dom(u[ A1) Udom(t:{B:])) — (dom(t[ A
2]) Ndom(e[B:1))).

Composiuon of two RFs are classified into the
following three kinds:

- If all RFs have the total tuples, (S(V):i_sax
T(W):,—z.has a total tuple,

— If (dom(t.[B])S(dom(t[A;])), two RFs S
(V)i and  (B(V)11-22@®T(W):1—s2)  have
same domains.

— If (dom{1,[B,])=>(dom(t:{ A.]}), the range of
S(V):i-.z, Is included in the range of (S(V):.-
Lo @T(W) -, such that dom(t[Az]) U (dom
(L[ A:]) Udom(t[B.]))— (dom(u[ A;]) Udom(t,[B
1)

Example:
Let S(V):1—->2with V={Al1A2},T(W):1—>2,
with W={A1A2} and R(X):1—>2, with
X={AlA2}, then:

1) S(V):1=>2(x):(plp2)—>(p3), T(W):1

~—>2:(p3) —>(pd)
B(V)11->2(x)@T(W):1—>2) : (plp2)
->(pd)

2) S(V):1—>2(x):(plp2)—>(p3pd), T(W):



1->2:(p3) —>(ph)
GV 1->2(x)®T(W):1—>2) : (plp2)
—>(ptps) .~
3) S(V):1—->2(x):(plp2)—>(p3), T(W):1
—>2:(p3p5) —>(p4)
B(V)I1 — > 2(x) @ TW):1 — > 2):
(pLp2p5)— > (pt) -

23 Jain of RF

The join is an operation that takes two
relations and concatenates each tuples of the
second relation with those tuples of the first
relation that satisfy a specified condition. The
condition is defined over the attributes of the two
relations[20]. There are several kinds of omn
operators: egui—)in and natural—join and etc.,
for any total tuple in the general relation models.
But in this paper, we consider two cases of
tuples such as total tuple and part#l tuple which
are introduced in previous clause. Hence, in this
section, for jin of two RFs in the relations, we
propose a new join operator the EE—join(note
them by > <%).

The EE-—)in operator is applied to two
relations, R(V) with Al1A2 and S(W) with
AlA2, via a common atiribute where [RA,] =
[S.A;]. The EE—jom of these relations makes a
new relation, T(X) with Y1Y2,whose tuples, t X,
have new two attributes(Y1 : the domain of the
tuples and Y2:the range of them):

Y1]=({RA] U s[B.AD-C[RA]INSS.

AD
Y2]= (x[R.A;J U s[S.A;]) — c[RA,] Ns[B.A
1J)
are formed by concatenating those tuples of R
(V) and S(W), reR(V), s&5(W), whose [R.A
2]= [S5.Ai]— components are ((rf[R.A;]&s[S.A
DV E[RA]ES[SALD, tee ROVI[[RA]=[S.A
1 S(W)Y=T(X), where,
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TX)={t] IreVseWi[Y1l] =([R.AJUs[S.
A — ([RA]NS[S.AID A[Y2]= (r[R-A:] Us
[S.A: ) —C[RA]Ns[S.A D}
We shall use the notation of EE—join like as R
(V)= > <B5(W)ii—>].

Example : Fig. 1 shows an example EE—join of
relational function derived from the relation
instances R(V) and S(W).

R(V) (W)
Al AL Al A3
pl p2 p3 p3 p4 ps pb
pl pd p4 ps
p2p3 p5p6 pS plp7
Yl YZ

R(V) ><FF S(W) pl p2 p4 PS5 p6
pl p3

pZp3 plp7p6

(Fg. 1) An instance of EE—Jon trom R(V) and S(W)
redation

Thus, EE—jin of previous RFs defines the

following forms:

(1) R(V)i5(plp2) > <MS(W):i—sa(p3pd), we
getl
Y1 = {plp2ps}, Y2={pbp6),

(1) R(V)I1-222(p1) > <5 (W) 1 i_5.(p4), weget:
Y1={pl}, Y2={p5},

(m) R(V):i-»:(p2p3) > <FES(W) i 2a(p5), we
getl
Y1={plp3}, Y2={plp6p7}.

24 Semi—join as function composition

It s important to point out that the
composition of two functions f and g derived
from two relations R and S, respectively may be
defined using a relation which is a join of R and
S. Gardarin demonstrated that
composition is almost equal to a semi—jin in

(6.

a function



Lemma 2.5 : Semi—pin[21]

The following relational algebra operations:
1) selection of a relation S(V), with V={AA.},
on the dom(A,),
2) EE—jpin of the result with relation, T(W),
with W={B,B.},
3) projection of the result on Y and Y, can be
represented as a composition of two RFs derived
from S(V) and T(W).
Therefore, the following relation is obtamed:S(V)
(W),
Proof:let S(V) with V={AA;} and T(W)
with W={BR.} be two relations. These two
relations EE—semi—joinable then for anv two
tuples t1 in S(V)2 in T(w)if t[A:] w[B],
where fis a set of constraints of the form xfy; €
{=,>,<,= ,<}). Then we have:
E= (1. v2p,) (3=, (8(V)) > <FT(W)), where

Y1 =dom(t,) Udom(tz) — (1. AU t:[B:]),

Y2=ran(t;) ran(t;)—(t[A]NL[B]).
Let S(V):1—>2 with V={AA;} and T(W):1
—>2 with W={BB,}] be two RFs m two
relations S(V) and T(W), repectively, then let S
(V):1—22(x)@T(W):1—>2 be a composition
of two RFs:
E=T(W):1->2(x)®5(V):1—>2

= (dom(t;) dom(t:)—(t[A]Nt{B]))

— > (ran(t) ran(t.)—(L[A1NL[B1))
(x:(dom(t;) dom(t.)—((t[A:] t.[B])).

Lemma 2.6 : the composition of two RFs T(W):
1—>2 [with W={BB:} ] S(V):1—>2(x)[with
V={AA.})] can be expressed as a unique RF
using the EE—join of the two relations defining
the RFs S(V):1—>2 [with V={AA}] and T
(W):1—>2 [with W={B:B:}].

Proof ; Let E=T(W):1—->2@5(V):1->2(x),

then we have:
E=(dom(t;) Udom(t:) — (L[ A.]Nt.[B\]))

—(ran(t)) Uran(tz) — (L[ A ] Nt B 1))
(x: (dom(t;) Udom(tz) — (L[ A:]NE2[B1]N)).
Let S(V) with V={A,A;} and T(W) with W=
{BB:} be two relations. If /[ A;] t:[B;],wheref 3
{=,>,<,= ,=}, for any two tuples i in S(V)
and t. in T(W),then these two relations are semi
—ijoinable. Then new relation T/(X)=T(W) >
<E S(V)with X ={Y1,Y2} 1s:
Y1=dom(t;) Udom(t:) — (L[ A1 Nt Bi1),
Y2=ran(t;) ran(t:)— (t1[A;JNt[Bi]).
In this new relation,we can consider one RF:
T 1—>2(x),with Y1Y2, where
X=(dom(t,) dom(tz)—((t:.[A:] t[B:I)))-

3. The Notations of Petri net

In this section, we use the common notations
of Petri net as in [3,5,9,11] and only recall the
oSt important ones.

3.1 Notations of Petri nets

Definition 3.1 : PN=(P,T,ES), a Petri net, is a
4—tuple, where P=(p,---p) 15 a fmite set of
symbols, each symbol is called a places, |P| =
0, T=(ty,-"tw) is a finite set of transitions, | T
| =0, and E=PxT—>N is a input function,
where is the set of positive integers, and S=TxP
—>N is a output function. i

Definition 3.2 ; [21] The transition has 4 modes
based on the number of input and output places.

1) The transition t is called T mode: it has
orly one input place and output place, ie,
el =1t =1,

2) The transition t is called J mode it has
several input places and only one output
place , Le, [t | >1, |t°] =1,

3) The transition t is called F mode :it has

only one inpui place and several output



places , te, [% | =1, [1°] >1,

4) The transition t is called X mode it has
several input places and several output
places , e, | %1 >1,{t°] >1.

Definition 3.3 : A marked net, <PNMo> is a
Petri net, PN, with an initial marking Mo. A
transition t € T is enabled at a marking M 1iff
M(p) = E(pt) for every p&P. If t is enabled at
M, then transition t may be fired yielding a new
marking M given by the equation:M'(p)=M(p)
—E(pt)+Sp) for all peP. M(t>M' denotes
that M is reached from M by firing t.

Definition 3.4 : A finite sequence of transition, s
=tl,--tn, is a finite firing sequence of < PNMo
=, iff there exists a sequence of marking MO tl
Ml 12,--tn Mn such that Vil =i<n:Mi(a>Mi+
1. Marking Mi+1 is said to be reachable from
Mo by firng s:Mo(s>Mi+1. An infinite
sequence of transitions, s=tl,-- s an nfinite
firing sequence of <PNMo> iff there exists a
sequence MOtIM1t2,-- such thatVil=i:Mi—1(t
>Mi.

Definition 35:Let R(PNMo) be the set of all
marking reachable from Mo.
Let L(PN,Mo) be the set of all fring sequences
and their suffixes in <PNMo> L(PNMo)={s
| M(s>»and MeR(PNMo)}.

Definition 3.6 : A marked net <PNMo> is
bounded iff there exists a finite K&N such that
for all piEP and for all reachable marking MM
€R(PNMo), M(pi) = k(Gf k=1 then the
marked net is called Condition/event net or Safe
net).

A transition t is live in <PNMo> iff for all
marking M&R(PN,Mo), there exisis M'ER(PN,
M) such that M’ enables t.

The marked net <PNMo>> is live iff VIET are
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ive,

Definition 3.7:[13] Let <PNMo)> be a
marked net. Pn is decomposible via a subset Po
of P iff there exists {t1,12} a subset of T, such
as (1)UL U2y U (2)°)=Po.

Example:
Let N=<PNMo> be a marked net, where P=

{pl.p2,p3.p4}, T={t1,t2}, then
Cal VD) NC2) U (12)°) =Po={p2}.

11 ©

Definition 3.8:(21] Let <PNwMw>> and <
PNM> be two marked nets. PNg» is a subnet
of PN and is denoted PN2PNg if and only if,
P2Prr, T2TwEy=E N (PrxTi),Sre =8N (TrrxPr
p) and M Mg a place pCPre is a input door
(ID)(resp output door OD)of RP iff there exists
te%p(resp t=p”) such that tETye

Example:

15

¥4

™

7
w 7

]
PM=(P,T,E,S,Mo)
®
7
P 123 P
a

O Output door(QD) . :lnpur door(ID)

RP=(PRP,TRP.ERP.SRP,MRFP)
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Definition 3.9 :[13] Let PN,=<PNgr, Mp>>,
PN;=<PNgp,Mrez>> be two marked nets.
PN1,PN2 are composable via Po iff " PNger PNaez
=Po and Tre N Teez= ¢

Definition 3.10 : [13] Let PN,=<PNgpr,Mge>>,
PN;= <PNpee,Mrez>> be two marked mets,
compasable via Po. The net PN=<PNM>
obtained by the composition PN,PN. via Po is
defined by: P=PNgeiNPNez=Fo and T=Tw:
Tarz.

3.2 Petri Nets like as logic program

The structure of Petri nets(PN) displays the
interrelationships between rules and predicates as
specified by the logic program.[21]

We concentrate on logic programs consists of
function—free Homn rules r,r,---ym, and each
rule r(also called a transition) is of the form B,
--Bi:=Ay A, where ADB, are
formulas,;= denotes implicationp=0 and g=0Q.
This clause means that if A, and --- and A,
then B, or---or B, The right—hand side and the
left—hand side are each called the condition and
the cinclusion. A Horn clause is one that is
either q=1 or
nonnegated,

atomic

q=0, where A,1=<i<pare

Example : Suppose we have the following PN:

The logic program corresponding to the above
net will be as follows:

T={t1,2t3},

P={pl,p2,p3,p4,p5,p6},

t1=([p3].{t1[1]1=13[2]}),

2= ({p5.p6 ],{t1{2])=t2[11}),
t3=([plp2.p4],{t2[2]=13[11})
E(t1)={pl,p2,p5},
E(2)={p3,p4}, E@3)={pb},
S(t1)={p3}, S(t2)={p5,p6},
S(3)={pl.p2p4},

and the logic program of this net is:
t1:(p3) ~— (pl,pZ,p5),
20 (pb,p8) — (p3,p4),
31 (plp2pd) — (pb).

In addiuon, the tableau of this net is:

Al A2

1 pip2ps p3

o) pIp4 pipé
i pé plpZp4

4. The Composition of Transition in the
Petri Nets

In this section, we propose a set of reduction
rules which combines two transitions into one or
superposes two transitions over the other, or
reduces the common places based on EE—join
ofRFs which is produced in the previous section.
And a set of reduction rules are called
“Functional reduction”. Functional reduction of
two RFs are classified into the following three
kands:

(1) Strong composition: combines two relations
to new one after reduction of the common
places,

{2} Superposition:superpose two relations to one
after superposition of the common places,

(3) Equivalence: reduces the common places.

Let <PNuMu>> be a subnet of <PNMo>=<
P,TESMo>>, PNy is decomposed as
TL(V) -and T2(W). Let TI(V):1—>2 with V=



(AA), T2(W):11—>2 with W={AA;} be two
transiions. For sunplify our research, Ordinary
Petri Nets are considered here, and a marked
net <P NMo> is replaced by <PN", Mo">.

42.1 Strong omposition(CF)

Definition 4.1 : For any tuples tl, in V, and t2;
in W, if t1,[T1.A2] t2{T2.A;] and the following
conditions are verified:
(1) vV 11,2, T", pke P, (=1),
- dom(t2)) ran(tl,)={pki}, =6
(dom(t2)Sran(tl)) Vran(t1)E dom(t2))
(2) ID=dom(tl,), OD=ran(t2,),
(3) dom(12,) Nran(tl,) Nran(i2,) = (ran(tly) N
dom(t2;))
then a strong composition made a new RF of
transition T(X):1—>2, with X={Y1Y2}, teX:
- t'[Y1] = dom(il,)+dom(t2;)—pki
- t'[Y2] = ran(t2)+ran(tll)—pki
s0 a reduced net PN is as follows:
(1) P"=P—pk
(2) T"=T—t1,—t2,+t’
(3) Mo"(p")=Mo(p)+ M(pki)+ S(pkitl)—
E(pki,t21).

Example :
(1)
2
1l
i —— 1 ™
3
4,
2
o4
TIV) T2(W)
Al AZ Al AL
Pl p2 p3pl pl p4
TV &CF THw) Y1 Y2
plp2 plpd

By the Strong composition CF, we get:
P ={plp2pi}, T ={t"}
t"[Y1]=pl+p2+p3-p3=pl+p2,
t"[Y2]=pd+pl +p3-p3=pl-+pd

sot":{pl,p2} — {pl,p4}

In this net, t1 is X mode, t2 15 T mode and an

agglomerated transition t' is X mode

(2)
i p3
0
pl p2
3
O
o
O
pl
[}
O M
TI(V) T2HW)
Al Al Al Al
L P2 p2 p3
p2 pé
TI(V) 8CF T2(W) vT T
pl p3
pl 4

By the strong composition CF, we get:
P"={pl,p3,p4}.
T ={t"1,t"3}.
t"1[Y1]=pl +p2-p2=pl,
11[Y2]=p3 +p2-p2=p3
t"3[Y1]=pl+p2-p2=pl,
V3[Y2]=p4+p2-p2=p4 -
M"(p)=0.

So, t'1:{pl}—{p3}, t"3={pl}— {p4}.

4.2.2 Superposition(CE)

Definition 4.2:For any two tuples t1, in V,and
2 in W, if t1[TLA2[T.A] and if the
following conditions are verified;
(1) Letvel, 2, T" , pk,pk’eP, (1=<nm)
- (dom(tl,) N dom(t2,) = {pkn}) =8 A (ran
(1) Nran(i2,)= {pk'm)} x8),
(wherezn 1, m=1)
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{2) ID=dom(tl,), OD=ran(2;),

A new RF:T(X):1—2, with X={Y1Y2},where
t"&X, was derived from a superposttion:
+ ta"[Y1]=dom(tl,) +dom(t2:)- ka(Pka)
-t "[Y2]=ran(tl;) +ran(t2:)- kn(Pk.)
so reduced net PN” is as follows:
(1) P"=P
(2) T"=T-11,-t2,+1"
(3) Mo™(p")=Mo(p)

Example !
1
1
T e
2 3 4 3
T1(V) T2(W)
Al Al Al Y]
pl p2p3 pl pip3
T1(V) @CET2(W) Yl Y2
pl pZp3

By the superposition of composition CE, we get:
P ={plp2}, T'={t"}
t" [Y1]=pl+pl-pl=pl,
t'[Y2]=p2+p3+p2+p3-p2-p3=p2+p3
sot":{pl} -> {p2,p3}

424 Epuivalence(EQ)

Definition 4.3 : For any two tuples t1, in V, and
2, in W, if t11[TLA276:2{T2.A,] and I the
following conditions are verified:
(1) LaaVil,t2 €T, pk P,
(dom(tl;) N ran(t2:)) = (dom(tZ:) N ran
(1)) ={pkj} =0
(2) S(pktls)-E(pkst2:) =h=0, (1=1)
(3) M(pk)- 3k, E(pk;t1)=0

Two new RFs of transition T3(X1):i—» with X=
{Y1Y2}, where t' =X and T4(X2):1—2 with X
={Y1Y2}, where t"EX were derived from a
equivalence;
t17Y: J=dom(tL;)- (M(pk,)- ZE(pk;t2:))pki, (1
=)
t"1{Yz]= ran(tl;)- (M(pk,)- ZE(pk,t2.))pk,
172 Y J=dom(t2,)- (M(pk;)- ZE(pk,tl:))pk, (1
=)
t"2[Y.]= ran(12,)- (M(pk,)- ZE(pk,t1;))pk,
so the reduced net PN” is as follows:
() P’=P, (h= 0)
P-pk,(otherwise, j=1)
2y T"=T-1.+t" (where 122)
(3) Mo™(p")=Mo(p)

Example :
pl p4 pl P
—n i
t] 1l 12
p3
2 . pS P2 pS
TIV) T2(W)
A1 AL AL Y]
plp3 p2p3 pap3 P3p5
l T1(V) BEQT2(W) l
T3XD) T4(X2)
Yl Y2 Yl Y2
pl p2 pa p5

By the equivalence EQ, for any tuples t1 in V,
and t2 in W, we get:

P"={pl.,p2,p4,05},

T ={t't"}

t[Y1]=pl+p3-p3=pl,

t[Y2]=p2+p3-p3=p2



t"[Y1j=pé-+p3-p3=p4,
t"[Y2]=pb+p3-p3=pd

5. Properties of the Petri Nets and
Reduction algorithm

In this section, we consider properties of the
Petri nets and reduction algorithm which are
proposed in section 4, and comparison with other

approaches.
5.1 Properties of the Petri nets

Where pratical applications are concerned, it is
necessary to avoid the analysis of a large
complex Petri net. It is convenient to proceed by
the reduced net (PN") and reducible module
(RP) if they are homogeneous with the original
net (PN).

About the properties of the Petri nets, the
liveness and safety are defined
by the firing sequence of ftransitions. If a
reduction dose not change any
firing sequence, the liveness is not changed. For
prove this property, we concerned as follows
three theorems:

Theorem 5.1: A Peiri net is live if and only if
its reduced net is live,

Proof: The liveness of Petri nets is defined by the
firing sequence of transitions and the number of
tokens received and produced by transitions, so if
a reduction dose not change any firing sequence
and the number of tokens, the liveness 1s not
changed.[7] Therefore, we prove this theorem by
checking whether a reduction changes the firing
sequence and number of tokens for each
reduction rule.

Strong Composition(CF):In the firing sequence of
transition, a reduction of CF by an agglomerated
transiton is a replacement of the subfiring

Hio|ZOKg J(goR B HER] wel BalR Hel

sequence by an agglomerated transition, based on
the EE-join of RF.

Therefore, the reduction dose not change the
firing sequence. Also, the number of tokens
received and produced by the agglomerated
transition is equal to that number of the RP.
Superposition(CE):A  reduction of the CE
eliminates nondeterministic situation. Transitions
having the same input and output place through
same weights of arcs and merged in an
agglomerated  transiion. The  agglomerated
transition has the same input and output place;
and the weight arcs is not changed. Therefore,
the reduction dose not change the firing sequence
and the number of token entering ID and leaving
OD.

Equivalence(EQ):The reduction rule of EQ dose
not delete any transition or replace any transition
by an agglomerated transiton. Therefore, the
finng sequence is not changed through the
reduction. In a RP, the number of tokens in
reduced common place. The transition can be
fired without considering the state of reduced
common places. Therefore, the reduction dose not
change the number of tokens entering and
leaving the RP.

Theorem 5.2:A Petri net is bounded if and only
if its reduced net is bounded.

Proof 1 The boundedness of Petri net is determined
by the number of tokens which flow in the net.
If the number of tokens is not changed, the
initial property of boundedness is preserved. In
the Theorem 5.1, we have seen that all of the
reduction rules do not change the number of
tokens which flow in the net.

Theorem 5.3:A Petri net is properly terminating
if and only if its reduced net is properly
terminating.
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Proof:In the same way as the earlier theorems,
the property of proper termination is preserved
because the reduction dose not change the

number or direction of flow of tokens in the net
52 Reduction algorithm

After the results contained in section 4, we
propose a reduction algorithms for functional
reduction, and prove that it can reduce any Petri
nets 1o an elementary one.

Reduetion Algorithms
1st step/*search RP in the nets*/
begin
input:= < PNMO0>>, a Petri net
i:=0; fim="F"; <PN,Mi> = <PNMO0>;
repeat
begin
if PNi is CF reducible then T:=3
else if PN is CE reducible then T:=2
ase if PNI is EQ reducible then T:=1

else fini:="T";
end- begin,if fini="F" then do 2nd step;
P=i41;
until fini = "T;

(PN", M")={(PNi, M1); output (PN, M")
end.

2nd step/* reduction step™/
begin
case T:[1,2,3]
1tlet  <PNi+1Mi+1> be the result
applying EQ to <<PNJMi>>;
1:let  <PNi+1Mi+1> be the result

applying CE to <{PNiMi>;
lilet <PNi+1Mi+1> be the result

applying CF to <PNiMi>;
end.

6. llustractive example and comparations
with other approachs

6.1 llustartive exampe

In ths mtroduce

functional

section, we informally
reduction  through
example net which models aconnection and
discormection model of ECMA protocol in which
is presented in [2,7].

example. The

The relational table of this net and reduced net
by functional reduction as follows:

Tr. 1ot place utput place Tr. input place ouiput place
T o | M PIRC

AC PIRC PacC AC PIRC BSRDCC

CA F2CC P4 CA P2CC PSRD

AD Ps F5RD AD

oD P4RD PICD' DD F2CCRD g lniny

FD PSCD P! FD PSCD Pl

DA PSRIY P! | DA P5RD Pl

oo PI* PZRC DC B FIRC

AC PI'RC' P&CC AC PI'RC PSRDCC

ca’ FXCC P4 CA’ FCC PSRD

AD PaRDY PITD AD F2CC'RD PICD

jujeg Pa PSRD oo

For P5CD Bl FDr PSCD’ P

DA ] PERD Pl RD

pA P5RI |4
(=) Relational table of example net (b) Relational table of reduced net

The relational table of reduced net which 1s
reduced by the Berthelot method is:

Tr. input place tuiput placs
I

AC PIPI P
cA

AD PB4RD PICD
DD P4 PSRDY
FD P3CD Fl

DA B5RDY ) 41

o oy

AC

ca

A P4RDF PI'CD
DD | B PSRD
D' PSCD P
DA' | PSRIY Pt




And, we can summarize a table which is
explained number of transition and places of the
nets( Original example net, reduced net whuich
15 reduced by Berthelot method, and by us) like
as follows;

BERTAELOT |
ORIGINAL NET METHOD METHOD

T 14 9 12
P 16 i0 14

(F: NO.OF PLACES, T: NO. OF TRANSITION)

This means that proposed method has not
strong power than Berthelot method but its an
usual  reduction method for
verification the protocol.

analysis or

62 Comparisons with other approaches

Our reduction has weaker reduction power
than one of Berthelot[2], and also the reduction
rules proposed(CFCEEQ) are very similar to
some ones of [2], but CF comprebend some rules
of [2]). Lee[7] has four rules:(1)RSN-1:this rule
consists of RSN-1P and RSN-1T,(2)RSN-2P,(3)
RSN-3P and (4)RSN-4T. In these four rules,
RGN-1PRSN-2P and RSN-3P can be covered
by the join of CF and CE. And rules RSN-1T
and RSN-4T can be covered by the join of EQ.
Ramamoorthy[12] has two rules:decision free
SWBM and non-decision free SWBM. The CF
cover all the SWBM's topologies. In addition, Tu
[16] proposed 10 rules which have 4 rules of
Berthelot. Rulel-7 and 10 are covered by CF.CE
and EQ.

7. Condlusion

In this paper,we have suggested a framework
for transformating a large class of Petri nets
into simply reduced nets. The concerned class
includes all reduction rules which may be
transformed into functional expressions, that is

NRITQIE Jez 8 HER Qo @AX Ho| 213

what we call the functional reduction class. We
claims that the approach is easy to implement
for transformation and shows a simpler reduction
procedure, The advantages are as follows:

1) It is easy to find the reducible module by
the relational tableau of transitions.

2) The reduction rules is only one type
(composition) and is automatically showed
the results places(input,output places) with
the number of arcs.

3) The agglomerated transition mode can be
expected.

4) A Petri nets explained by the formal

relational

definition  using scheme In

relational database,
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