Discrimination of Underground Explosions from Microearthquakes through the Pure-Continental Path
순수 대륙 경로에서 미소지진과 지하 인공폭발의 구별

김소구 (So Gu Kim)
한양대학교 지진연구소

요약/Abstract

한반도 남부의 순수 대륙을 통과한 지진파를 가지고 미소지진과 지하 인공 폭발의 구별에 관한 연구를 한다. 지하 인공 폭발과 미소지진의 파형 특성은 관측 및 이론 지진 기록지를 가지고 수행한다. 이러한 지진파 파형 특성은 주로 진원에키니즘에 전파 파형보다 강한 영향을 미친다. 미소지진에서는 double-couple 진원, 그리고 폭발에서는 single-couple 진원이 주어진다.

진원이 아주 천부층에 있을때 Rayleigh파의 fundamental mode (1~6초 주기)인 R_s파와 guide파인 L_s파(8~12초 주기)가 잘 나타난다. 또한 폭발에서 SH파는 nodal line이 없기 때문에 초동 진폭이 약하게 나타난다.

인공폭발의 이론 지진 기록지는 압축 초동의 P파와 R_s 및 L_s파가 나타남을 알 수 있다. 그 반면, 전자의 초동은 관측점에 따라 압축(compression)과 평창(dilatation)이 나타났고 L_s파는 복잡하고 R_s파는 것이가 커짐에 따라 사라지는 것을 알 수 있다.

Discrimination studies between microearthquakes and underground explosions are carried out in the pure-continental path of north-south within the Korean Peninsula. The characteristic waveforms for explosions and microearthquakes are investigated in the light of observation and synthetic seismograms. The characteristic waveform generation is mainly a function of source mechanism and ray-path and former influences more strongly than the latter. A double-couple source mechanism for microearthquakes and a single-couple (force) mechanism for explosions are presented in this study.

It is found for very shallow events to have outstanding of L_s waves in the transverse components that pass through the upper crust with period of 1~6 seconds and fundamental modes of Rayleigh waves, R_s in the vertical component with period 8~12 seconds. Furthermore it is pointed out that the first arrival amplitudes of SH waves for explosions are always small regardless of azimuth...
of stations since there is non-existence of nodal lines for the explosion mechanism. Theoretical seismograms for explosions show the first motions of compression with short wavelengths as well as mostly fundamental modes of Rayleigh waves, R_s waves and L_s waves, whereas those of micro-earthquakes give either compression or dilatation according to the back azimuth epicenter to stations and poor or non R_s waves and complicated L_s waves, depending on the focal depth.

The present studies were supported by the Basic Science Research Institute Program, Ministry of Education, 1994 (BSRI-94-5420)

INTRODUCTION

The Discrimination studies between earthquake and underground nuclear explosions have been carried out by several seismologists (Nuttli and Kim, 1976; Dahlman and Israelson, 9179; Masse, 1981; Smith, 1993). The discrimination studies using teleseismic events have been highly studied and successful except for some anomalous events. Douglas et al. (1974) and Landers (1972) have found some anomalous earthquakes in Tibet and Kazakh. Kim and Nuttli (1976, 1977) also investigated some anomalous earthquakes and nuclear explosion in Eurasia using spectral analysis and magnitudes of body surface waves. It has been found that m_o/m_a values of anomalous earthquakes are close to those of underground nuclear explosions. Bruns (1971), Hanks and Wyss (1972) and Forth (1975) demonstrated the P-wave spectral to investigate corner periods and asymptotic slopes which can be explained in terms of source finiteness and fractional stress drop.

The local event discrimination between microearthquakes and underground explosions, however, has not been studied eagerly so far. Furthermore the development of detectability of small-yield explosions whose epicentral distance is not greater than 400km have not been actively studied in Korea in the light of seismological aspects. For the sake of the local event detectivity study, we use local microearthquakes and explosions recorded in the Korean Peninsula in collaboration with the reflectivity method of synthetic seismograms (Kind, 1989)

The left-lateral and right-lateral strike slip motions, and normal-fault and reverse-fault dip slip motions are applied for a double-couple source mechanism for earthquakes, whereas source mechanism for explosion is assumed to be a single-couple (force).

BASIC THEORY OF SEISMIC DISPLACEMENTS

Following Ben-Menahem and Singh (1972), we obtain the following expression for the far-field displacements for elements area ds in the source coordinates and the initial magnitude of dislocation, u_0 (see Fig.7).
\[u_r = i u w u d s / 2 n (\beta/\alpha)(n \cdot e_r)(e \cdot e_r) \exp[\imath (w t - K_R)] / R \]
\[u_s = i u w u d s / 4 \pi \beta (e \cdot e_a)(n \cdot e_x) + (n \cdot e_w)(e \cdot e_r) \exp[\imath (w t - K_R)] / R \]
\[u_\phi = i u w u d s / 4 \pi \beta (e \cdot e_\theta) + (n \cdot e_\phi) \exp[\imath (w t - K_R)] / R \]

Where \(w \) is an angular frequency and \(g(w) \) is the Fourier transform of the source time function \(g(w) = \text{I} \mu \nu \cdot \alpha \) and \(\beta \) are P- and S-wave velocities, and \(K_\alpha \) and \(K_\beta \) P- and S-wave wavenumbers. Equations (1), (2), (3) represent the seismic fields of P, SV and SH waves respectively. After rearrangement, the new form of the displacements for P, SV and SH waves.

\[u_r = u d s / 12 \pi \beta (\gamma_\lambda) (\beta/\alpha)^2 \gamma_\lambda F \exp[\imath (w t - K_R)] + O(1/R^3) \]
\[u_{sv} = u d s / 24 \beta (\gamma_\lambda) \partial F / \partial \nu \exp[\imath (w t - K_R)] / R \]
\[u_{sh} = u d s / 24 \beta (\gamma_\lambda) \partial F / \partial \phi \exp[\imath (w t - K_R)] / R \]

where \(F = F(\lambda, \delta ; i_n \phi) \) is given by Ben-Menahem and Singh (1972).

From the above-equation, the source is at \(O(r_0, 0, 0) \) and the observation point is at the distance \(R \) of the point \((r, \theta, \phi) \). \(i_n \) is a take-off angle of a seismic ray leaving from the source.

For the radial stress \(\sigma_r \) for a tamped shot for the explosion source (Rodean, 1971).

\[\sigma_r(\gamma, \tau) = \rho [\alpha^2 \partial^2 \nu / \partial r^2 + 2(\alpha^2 - 2\beta^2) \xi / r] \]

Where \(\xi = \text{radial displacement} \)

From relation between scalar potential \(\chi \) and reduced displacement potential \(X \). \(X \) is independent of \(\tau \) and is a function of \(\tau \) alone,

\[X(\tau) = \chi(\tau) \]
\[\tau \text{ is retard time and is defined as} \]
\[\tau = t - (t - R_\ast) / \alpha \]

\(R_\ast \) = elastic radians, wave equation for spheri-cal P waves is

\[\partial^2 X / \partial \tau^2 = \alpha^2 \partial^2 X / \partial \gamma^2 \]

Finally we derive the relation between the radial displacement \(\xi \) and the reduced-displacement \(X \) as

\[\xi(\gamma, \tau) = -[(1/\alpha \nu) \partial X(\tau) / \partial \tau + X(\tau) / r^2] \]

and the relation between the reduced-displacement potential \(X \) and the stress \(\sigma_r \) at \(\tau = R_\ast \) as

\[R_\ast \sigma_r(R_\ast, \tau) = \rho [\partial^2 X(\tau) / \partial \tau^2 + (4\beta^2 / R_\ast^3) X(\tau)] \]

\(\xi(\gamma, \tau), \sigma_r(R_\ast) \) and \(X(\tau) \) may be solved by using Laplace transform (Rodean, 1971). Equations (1) to (10) represent the basic concepts for displacements of double-couple and single force source for an earthquake and an explosion, respectively.

Synthetic seismograms for P-SV waves and SH waves are generated in the vertical (P-SV waves) and in the tangential component (SH waves) respectively. The synthetic seismograms for earthquakes are dependent on the crust model as well as source parameter of mechanism, whereas explosions are dependent on the source crust model alone.
DATA ANALYSIS AND INTERPRETATION

In order to compare the waveform characteristics of explosions with microearthquakes, we take into account four presumed underground explosions, two anomalous events and normal microearthquakes, which are recorded at Seoul. Figs.1. and 2 represent explosion repulsion recordings that occurred in the Huanghe region of North Korea. We can see strong Lg waves and Rg waves for these explosions. The explosion recordings of May 3, 6, 7, 27, 1988 belong to a series of the unknown explosions that occurred from January to June, 1988 in North Korea. As shown in the seismogram the first motions of P-waves are all compressional and amplitudes of the first arrivals of SH-waves are relatively small in the E-W components. On the other hand, we can observe strong Lg waves in the transverse component and Rg waves of long period in the vertical component. We could not determine the exact parameters of the source due to lack of observations. We determined, however, the epicentral distance and direction as well as the origin time and magnitude for explosions.

In the light of the characteristics of the shal-

Fig. 1 The seismograms of the presumed explosions of May 3 and 27, 1988 on the three components.
Fig. 2 The seismograms of the presumed explosions of May 6 and 7, 1988 on the three components.

low source, R_α waves of the fundamental modes of Rayleigh waves are extremely depth-dependent in both amplitudes and frequency content. L_α waves for explosions are mainly formed by P to SV conversion and closeness of source to the interface or the free surface, particularly enhancing strength of L_α waves in case of irregularities of the interfaces, the observation of L_α waves for explosions is a local wave-guide phenomenon that follows strong decrease of amplitudes with depth. The seismograms for Hongsung earthquake of October 7, 1978 and for Daekan earthquake of January 8, 1980 are not given (see Table 1) since they are found to by very shallow-focus earthquakes of the intermediate size ($M > 5.0$). It seems to be very artificial that the origin times of the events for the Figs. 1 and 2 almost exhibit the exact unit hour.

The events of December 1, 1980 and April 15, 1988 are considered as anomalous (skeptical) events in the light of strength of L_α wave and R_α wave generation. Particularly we can see strong L_α waves of the event, April 15, 1988 in the transverse component. This suggests that the closeness of this event source has the irregular interface or free surface. The seismograms of Figs. 4 and 5 indicate normal earthquakes that occurred in North and South Korea. The waveform characteristics of L_α wa-
Fig. 3 The seismograms of the presumed anomalous events of December 1, 1980 and April 15, 1983 on the three components.

Fig. 4 Earthquakes of Munchon, July 19, 1992 and Mt. Kyerong, February 12, 1994 on the three components.
Table 1. Hypocenter parameters of seismic in this study.

<table>
<thead>
<tr>
<th>Date</th>
<th>O.T.(LST)</th>
<th>Epicenter</th>
<th>M</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>M/D/Y</td>
<td>H-M-S</td>
<td>Lat(N) Long(E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/07/78</td>
<td>18:19-52.2</td>
<td>36.6 128.7</td>
<td>5.0(MO)</td>
<td>Hongseong</td>
</tr>
<tr>
<td>12/01/80 AEQ</td>
<td>13:39-57.9</td>
<td>40.7 127.2</td>
<td>3.5(MO) 3.8(NK)</td>
<td>Rangrim</td>
</tr>
<tr>
<td>01/08/80</td>
<td>06:44-13.3</td>
<td>40.2 125.0</td>
<td>4.9(ISC) 5.3(MO) 5.4(NK)</td>
<td>Doikwon Mt.Chonma h=3km</td>
</tr>
<tr>
<td>04/15/88 AEQ</td>
<td>15:44-1.3</td>
<td>40.3 126.9</td>
<td>3.7(MO)</td>
<td>Doshung h=5km</td>
</tr>
<tr>
<td>05/03/88 EX</td>
<td>14:59-53.4</td>
<td>38.3 126.2</td>
<td>3.4(MO)</td>
<td>Namchosan</td>
</tr>
<tr>
<td>05/06/88 EX</td>
<td>17:58-56.4</td>
<td>NW 118kw</td>
<td>2.9(MO)</td>
<td>Hwanghe</td>
</tr>
<tr>
<td>05/07/88 EX</td>
<td>14:58-16.3</td>
<td>NW 75kw</td>
<td>2.7(MO)</td>
<td>Hwanghe</td>
</tr>
<tr>
<td>05/27/88 EX</td>
<td>17:00-28.8</td>
<td>NW 133kw</td>
<td>3.4(MO)</td>
<td>Hwanghe</td>
</tr>
<tr>
<td>06/23/89</td>
<td>00:26-0.1</td>
<td>36.7 127.8</td>
<td>3.5(MO)</td>
<td>Gisoun</td>
</tr>
<tr>
<td>07/19/92</td>
<td>17:01-56</td>
<td>39.1 127.7</td>
<td>3.1(MO)</td>
<td>Munchon</td>
</tr>
<tr>
<td>03/01/93</td>
<td>12:30-42.9</td>
<td>35.8 126.9</td>
<td>3.9(MO)</td>
<td>Jungui</td>
</tr>
<tr>
<td>02/12/94</td>
<td>11:58-14.3</td>
<td>36.4 127.3</td>
<td>3.5(MO)</td>
<td>Mt.Kyerong</td>
</tr>
</tbody>
</table>

LST : Local Standard Time
AEQ : Anomalous earthquakes
EX : Explosions
MO : Korean Meteorological Administration
ISC : International Seismological Center
NK : North Korea

For the irregularities of the interface. No R_s waves are not observed for the earthquake of Goisan earthquake, June 23, 1989 and the Jungju earthquake, March 1, 1993, indicating that the depth of these earthquakes are deep (h>10 km). We can see most of earthquakes near the fault zones in the seismotectonic map (Fig. 6). As a result, the earthquake occurrence is consistent with the major fault zones in the seismitectonic map (Masaitisa, 1964).

Synthetic seismograms for earthquakes and explosions are given in Figs. 8, 9, 10, 11 and 12 using Reflectivity method (Kind, 1989). The crustal model for Figs. 8 and 9 is taken from Bouchon (1982) and S. J. Kim and S. G. Kim (1983) with changing of low-velocity sediment thickness of 2.0km (a=2.8km/s) and Moho P-wave velocity of 7.98km/s at 32km. The crustal models for Figs. 10, 11 and 12 selected from Krebes and Hron (1980) with changing of thick sediment of 6km (a=4.2km/s) and Moho P-wave velocity of 8.1km/s at 35km. The theoretical studies demonstrate that the shallow seismic source in the thin sediment generates large amplitudes fundamental and higher modes of Rayleigh waves. The generation of synthetic seismograms is a function of source mechanism and propagation path of seismic waves. Consequently the characteristic waveform of synthetic seismograms depend on parameters of the source mechanism is much greater than of crustal structure for body waves, but not for surface waves R_s and L_s waves. It is evident that explosions generate little amplitudes of SH-wave motion and highly developed fundamen-
Fig. 5 Earthquake of Goisan June 23, 1989 and Jungju, March 1, 1993 on the three components.

Fig. 7 Coordinate systems of a seismic source(a) and the fault plane geometry(b).
Seismotectonic Map of Korea

1 - Region of Archean folding.
2 - Region of lower Proterozoic folding: massifs/mountain masses:
 I) Bangria II) Kwanwo III) Kyonggi IV) Seorak(Yongnuni) sedimentary layer of the Platform.
3 - (Intraplatform depression) buckles filled with sediments for motion of the upper Paleozoic, silurian, lower and upper Paleozoic and lower Mesozoic origin: V) Amnakang group VI) Hyesen-iron group VII) Pyonggu group VIII) Okcheon group Superimposed geosynclinal Zones.
4 - Region of late Precambrian (?) folding IX) folding zone.
5 - Region of upper Paleozoic folding: X) Tumangang graben of Silhote-Allin geosyncline Mesozoic and Cenozoic superimposed structures.
6 - Branch-geosyncline structure of sedimentary layers in intraplate graben.
7 - Projected Archean basement in graben:
8 - Graben-geosynclines of the sedimentary layer within massifs.
9 - Internal depression filled with sediments and volcanic formations of Cretaceous and middle-upper Jurassic.
10 - Internal depression filled with sediments and volcanic formation of upper Jurassic and Cretaceous. XI - Marginal psephos of the Taishin Basin: XII Region of Mesozoic folding of the Sakas geosyncline, 12-Cenozoic depression and grabens. Major Faults and Fractures: 13 - Marginal structural belt (linear rise). 14 - Areas of fault accompanied with movement in the Mesozoic. 15 - Areas of faults (e. chelon folds) in the sedimentary layer on platform. 16 - Faults associated with movements in the Cenozoic.

Fig. 6 Seismotectonic map of Korea, Masaitisa, 1964
tal modes and higher modes depending on the increasing focal depth.

Figs 8 and 9 indicate synthetic seismograms of P-SV(upper) and SH waves(lower) for an earthquake of a right-lateral strike motion and an explosion with a focal depth 300m using Reflectivity Method (Kind, 1989). We can see \(R_\alpha \) and \(L_\alpha \) waves for both explosion and earthquake recordings in case of a very shallow-focus \((h=1.0\text{km})\). Earthquakes, however, excited more \(R_\alpha \) waves and higher modes than explosions. Explosion synthetic seismograms show more high frequency content. Figs 10 and 11 exhibit synthetic seismograms of P-SV(upper) and SH waves(lower) for shallow-focus earthquakes of focal depth \(h=1.0\text{km} \) and \(h=15.0\text{km} \) respectively. We can observe \(R_\alpha \) and \(L_\alpha \) waves for the earthquakes with \(h=1.0\text{km} \), while we can observe only \(L_\alpha \) waves for the earthquake with \(h=15.0\text{km} \). We can see strong \(L_\alpha \) waves and weak \(R_\alpha \) waves for the explosion seismograms of P-SV(upper) and SH waves(lower) in Fig 12. In case the source is located at the thick sediment of 6km, we also observe good

Fig. 8 Synthetic seismograms P-SV(upper) and SH waves (lower) for a shallow earthquake with a focal mechanism: \(\lambda_{(source _time)} = 1.0\text{s}, \ h_{(depth)} = 1.0\text{km} \), sediment thickness : 2km, \(= 2.8\text{km/s} \).

Fig. 9 Synthetic seismograms P-SV(upper) and SH waves (lower) for an explosion with the same model as Fig.8, except for \(t_{(1/0.25s, \ h=0.3\text{km})} \).
and strong S_n (Moho refraction) and S_nS (Moho reflection) in Figs. 8, 9 and 10.

The correspondence between the synthetic and observation is quite good, indicating that the synthetic seismograms for explosion, indeed, are consistent with the observed presumed explosions. We have good observation of R_e and L_e waves of explosions in both observation (see Figs. 1 and 2) and synthetic seismograms (see Figs. 9 and 12). We try to exhibit the characteristic variation of waveforms of explosions and earthquake by analyzing data from observed explosions and earthquakes as well as the synthetic seismograms. We have reached the conclusion that the source depth is of great significance for waveform generation of R_e waves and complexity of L_e waves for regional local events.

DISCUSSION AND CONCLUSIONS

Most of phases for body waves on the seismograms account for either multiple events or
many reflection and refraction (e.g., P, P', P_n, P_s, P_v) from the interface. The results of multiple reflection for SV and SH waves within the interface or the free surface demonstrate the generation of L_π waves and fundamental modes of Rayleigh waves (R_π). As the characteristics particle motion of surface waves L_π waves and R_π waves can be observed well in the transverse component and the vertical component, respectively. Should the source is in the basin of thin sediments (~ 2 km), we can observe large amplitudes long duration of R_π waves due to P-SV conversion as well as the strength of L_π waves. Bouchon (1982) stated that the predominant phases through the pure-continental path are shown to be guided waves made up of SH and SV waves incident on the Moho at angles of incidence more grazing than critical angles and their multiple reflection.

From this research, we have found the following results:

1) The first motions of explosions are found to be compressional on the theoretical observational records regardless of the epicenter azimuth-to-station.

2) The first motions of microearthquakes are found to be compressional or dilational according to the epicenter azimuth-to-station due to variety of the source mechanism.

3) It is evident from this consequence that the source mechanism of microearthquakes represent a double-couple whereas that of the explosions is assumed to be a single-couple (force).

4) The explosions and shallow-focus earthquake ($h = 1.0$ km) generate outstanding L_π waves in the transverse component that through the upper crust with period of $1-6$ seconds, and the fundamental Rayleigh waves, R_π waves with period $8-12$ seconds in the vertical components. In case of very shallow-focus earthquakes, we obtain more higher and fundamental modes of Rayleigh waves. Most of shallow-focus earthquakes in the Korean Peninsula are found to have the focal depth of greater than 10 km. Consequently we usually observe L_π and R_π waves for explosions in the Korean Penin-
sula.

5) The stations near nodal lines observe little or poor P-wave first motions and large SH-waves for earthquake, whereas they always observe large P-wave arrivals and little DH-wave arrivals regardless of epicenter azimuth for explosions.

6) It turned out to be clear that the events of 05/03/94, 05/06/94, 05/07/94, and 05/27/94 must be presumed explosions that occurred in series for the period January, 1988—June 1988 in North Korea.

ACKNOWLEDGMENTS

The present studies were supported by the Basic Science Research Institute Program, Ministry of Education, 1994 project No. BSRI-94-5420, This work was also supported in part by Center of Mineral Resources Research (CMR), an affiliate of KOSEF, Korea University. I would like to thank both organizations for their financial support in the course of this work.

REFERENCES

Bouchon, Michael(1982). The complete synthesis of seismic crustal phases at regional distances, J. Geophys. Res. 87(B3), 1735-1741

김소구
한양대학교 지진연구소
경기도 안산시 대학동 396
TEL : (0345) 400－5532
FAX : (0345) 82－2808