Hydrolysis of Aluminum Nitride Powder

AlN 분말의 가수분해 특성

  • 최상욱 (인하대학교 공과대학 무기재료공학과) ;
  • 정홍식 (동양화학공업(주) 중앙연구소) ;
  • 황진명 (인하대학교 공과대학 무기재료공학과)
  • Published : 1994.01.01

Abstract

Aluminum nitride was hydrolyzed in contact with water, evolving the reaction heat of 172 cal/g within 12 hours to form alumina trihydrates. At 4$0^{\circ}C$ >, amorphous alumina hydrate was easily produced by the spontaneous breaks of AlN particle at the beginning of the hydrolysis process, while bayerite was formed by the dissolution-recrystallization processes of amorphous alumina hydrate at the temperature between 4$0^{\circ}C$ and 6$0^{\circ}C$, and pseudo-boehmite was generated on the surface of AlN particle by the condensation process of the corresponding phase at 6$0^{\circ}C$ <. The longer the hydrolysis timje or the higher the value of pH in solution, the more the bayerite phase was produced. However, pseudo-boehmite was easily generated under the following favorable conditions; when the hydrolysis reaction occured rapidly at the beginning and when the absorption of OH radical on the surface of AlN particle was disturbed by ethyl alcohol in a solution. However, aluminum nitride was hardly hydrolyzed in a solution of pH 2.0.

AIN은 불안정하여 물과 접촉하면 12시간 이내에 172cal/g의 열을 내면서 가수분해되어 알루미나 삼수화물이 생성되었다. AIN의 가수분해 과정은 초기에 비정질 알루미나 수화물이 생성되었으며, 가수분해 조건에 따라 비정질알루미나 수화물의 용해-재석출과정으로 알루미나 삼수화물 특히 bayerite가 생성되었고, 응축과정으로 pseudo-boe-hmite가 AIN 입자표면에 생성되었다. 가수분해 온도 4$0^{\circ}C$ 이하에서는 비정질 알루미나 수화물이, 4$0^{\circ}C$와 6$0^{\circ}C$ 사이에서는 bayerite가 각각 생성되었고, 6$0^{\circ}C$ 이상의 경우는 초기에 pseudo-boehmite의 입자표면에 형성되었다. bayerite는 가수분해 시간이 길수록, 그리고 용액내 pH가 높을수록 잘 생성되었으나 pseudo-boehmite는 가수분해 반응이 급격히 일어날 때와 용액내 ethyl alcohol의 존재로 OH 기의 흡착을 방해하여 가수분해 반응이 억제될 때 잘 생성되었다. 그리고 pH=2.0인 용액에서는 AIN의 가수분해가 거의 일어나지 않았다.

Keywords

References

  1. Nitrogen and Phosphoros v.VIII Comprehensive Treatise on Inorganic and Theoretical Chemistry J.W. Mellor
  2. J. Am. Ceram. Soc. v.2 no.9 Intrinsic Disorder in Aluminum Nitride A.N. Cormack
  3. J. Am. Ceram. Soc. v.68 no.12 Compatibility of AIN with Group VIII Transition Metals J.C. Schuster
  4. J. Cryst. Growth v.34 Growth of High Purity AIN Crystals G.A. Slack;T.F. Mcnelly
  5. セラミツクス v.25 no.8 粉體の 親水性疏水性 宇津木 弘
  6. J. Am. Ceram. Soc. v.73 no.3 Degradation of Aluminum Nitride Powder in an Aqueous Environment P. Bowen;J.G. Highfield;A. Mocellin;T.A. Ring
  7. Anal Chem. v.61 Diffuse-Reflection Fourier Transform Infrared Spectroscopic Studies of the Stability of Aluminum Nitride Powder in an Aqueous Environment P. Bowen;J.G. Highfield
  8. Fundamental Structural Ceramics Densification and properties of AIN K. Komeya;A. Tsuge;N. Iwase;S. Somiya(ed.);R.C. Bradt(ed.)
  9. J. Am. Ceram Soc. v.71 no.7 Effect of Silicon Dioxide on the Thermal Diffusivity of Aluminum Nitride Ceramics T. Yagi;K. Shinozake;N. Ishizawa
  10. Sintering-Theory and Practice Hot-pressed Oxynitrides in the System AIN-Al₂O₃ T. Sakai;D. Kolar(ed.et al.)
  11. J. Mat. Sci. v.21 The Thermal Stability of AIN A. Abid;R. Bensalem;B.J. Sealy
  12. Advances in Ceramics v.26 Aluminum Nitride Substractes for Thin-Film Hybrid Integrated Circuits R. Chanchani;M.F. Yan(et al. ed.)
  13. Alumina Chemical Sci. and Tech Hand Book Nomenclature, Preparation, and Properties of Aluminum Oxides, Oxide Hydroxides, and Trihydroxide K. Wefers;L.D. Hart(ed. et al)
  14. JANAF Thermochemical Tables(2nd Ed.) , NSRDS-NBS 37 U.S. Natl. But, Std. R.D. Stull;H. Prophet
  15. Proc. of Brit Ceram. Soc. v.13 Crystallization Processes in Aluminum Hydroxide Gels G.C. Bye;D. Alderoft
  16. セラミックスの 化學 柳田博明
  17. J. Appl. Chem. Biotech v.23 Hydrolysis of Aluminum Alkoxides and Bayerite Conversion B.E. Yoldas
  18. 인하대학교, 석사학위논문 알루미늄염 침전법과 알콕사이드 가수분해법에 의한 알루미나 분체의 제조 이종길