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ABSTRACT

In many circumstances, it is desired to move a mass from one position to another without inducing
any vibration in the mass being moved. Two such problems are considered here : the motion of a mass
initiated by another mass, and the motion of a pendulum initiated by the specified motion of its support.
In each case, it is desired that the system start at rest and come to rest in the second position. A simple
strategy for the specified motion is given here. The method is motivated by engine cam-follower design.
The force required to move the system in question is determined as well as the maximum value of the
force required(and the times at which these forces take place).
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include valve train systems in engines, recording

1. Introduction heads on computer disk drives and robot arms.’ In

fact, the general design of a typical engine cam gives

In many circumstances, it is desired to move a the motivation for the specified motion we attempt

mass from one position to another without inducing as follows. There are several approaches to the
any vibration in the mass being moved. Examples problem posed here.??
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Fig. 1 The system : movement of a mass
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Fig. 2 Prescribed motion x.(¢)

moving the cart in a prescribed motion. Suppose
both the mass and cart are at rest initially. And
suppose that we wish to move the cart so that the
mass m comes to rest again after a displacement D.

The differential equation of motion of the mass
is:

or

X+ wix = wixo(t) (2)

where cu,,=,/i
m

Since we want m to move a distance D with no
overshoot, it is important that the cart move a
distance D as well. This means the spring which is
unstressed initially will be unstressed in the final
position as well. Thus each of the two masses will
end up with a displacement D.

In order to accomplish this, let us suppose that the
specified displacement has the form:

xa(t)—7 [1_C°5<w;t>]’ 0St£<g)_7:)
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The motivation for the (1—cos ) in (3) comes
from typical shapes used in engine valve train sys-
tems.® A plot of (3) is shown in Fig. 2. Notice that
the shape of the curve gives hope that the strategy
might work. Notice also that the speed with which

we can make the move is determined by « since (;[
n

is fixed.
We will see that the values of ¢ which will work
are:

a=3,57, - O]

That is, the frequencies of the prescribed motion x,
(#) can be:

Wn Wn Wn Wn
3050 7 T @RAD) ©)
where, k=1, 2, 3, --
We construct the solution to (2) with the specified
displacement x,(#) given by (3):

i+ a)nx-7Dcu,,[1 cos( a);t )] (6)
The right hand side of (6) consists of a constant

term plus a cosine term. As such, we guess a particu-
lar (forced) solution of the form:

xp=P+ Qcos( a)(,;t ) (7

where P and Q are constants to be determined so
that (6) is satisfied. Inserting (7) into (6) and cancel-
ing the common term (w?%) gives:

The homogeneous solution to (6) has the form:

xn=Asin(wat)+ Bcos (wnt) ©
Adding (7) and (9), we get:
o ron(22)
+ Asin{wat)+ Bcos(wat) (10)
We determine the constants A and B from the initial
conditions :
x(0)=x(0)=0 (11
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These conditions yield
—0 p=ip[_1
A=0, B=3D| 77y | 12)

Thus, we have the complete solution :

xZ%D[l— aza_zlbos< w‘;t>+ azl_lpos(wnt)}
(13)

There are two conditions which we must now
impose on (13). First, we want x(¢,)=D, where ¢,=

(%> And finally, we want the velocity of m to

n

vanish at t{i.e. ¥(¢,)=0). Note that:

M:ﬁ (rad.)
a
and w.ty=ar (rad.) (14)
Thus from (13), we get :

x(tf):%D[l +az—ajl—+az—lecos(af7r)} (15)
The terms inside the braket of (15) must be 2 if x(¢)
=D. This will happen if cox{(ex)=—1. Thus, this

condition requires :
0:3, 5: 6v Ty (2k+l) (16)

(Note that the term @=1 is inappropriate.)
Now we require that x(¢,)=0. From (13) and (14),
we get

£ ()=~ waD| 7~ sin(an) | a7

This expression vanishes if =2, 3, 4, ---.

The terms which are common to (16) and (17) are
then the odd integer values of ¢ from 3 on. Thus the
solution for the motion of the mass m is:

x:%D[l —%cos( a)(;t )

+a2—£fcos(wnt)}, 0<t<y,
=D , >t (18)
where tf:< a/7r>
w

n

and ¢=3,5, 7, -+, Cu+1)

A plot of x,(¢) and x(¢), the specified motion of the
cart and the esulting motion of , is shown in Fig. 3.
Notice that at ¢, the distance between s and the
cart is the same as it was initially. Thus the spring
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Fig. 3 The motion x,(f) and the mass motion x(¢)
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Fig. 4 The force required to initiate the motion x.(¢)
for the movement of a mass

is unstressed. And since the velocity of  is zero and
the prescribed motion of the cart remains at x,=D,
the mass m will remain at rest at the point x=D.
Equation (18) gives the design equation for the
motion shown in Fig. 3. As noted, ¢ can take the

values 3, 5, 7, ---. Thus the time required to move the
mass m a distance D is:
()

In order to minimize the time ¢,, we should select
=3 and select a large value of the spring constant

/e<t0 increase the natural frequency w, =, /—1% > The

solution is not unique since we can take ¢=3, 5, 7, -
and adjust @, accordingly

The design equations for the strategy are
contained in equations (3) and (18). One final consid-
eration is the force F,(¢) required to move the cart.
Writing F,=m,a,+ k(x.— x) where g, is the second
(time) derivative of the motion (3), we obtain :

SHILSTUSSHEX A4 A 13F, 19949,/85
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where 0< ¢t <%

n

The maximum amplitude o

o

the mass ratio 7:; . Suppose we take a¢=3(the case

for the fastest transit from A to B). Then we can
determine the positions and heights of the maximum

amplitudes :
. . . 2F, .
The initial and final amplitude o Dk
function of the mass ratio R,,,(z 7::;’ :
o))
< Dk t=0_ mafz - a’2 (21)
2F, . . . _ Mo
A plot of E S shown in Fig. 4. Here ¢«=3 and
=0.20.

3. Case Study for the Pendulum Motion

Suppose now that we have a simple pendulum
whose support O is to be moved a distance D.
Suppose at ¢=0, the pendulum is at rest: §= 6 =0.
We then seek a strategy for moving the support ¢ in
a prescribed fashion so that when o has moved the
distance D, the pendulum again comes to rest. See
Fig. 5.

The situation in Fig. 5 could be a model for a
crane system desgned to move material from one

X(t) .Dl *|

£
} m é
Fig. 5 The system: movement of a simple pendulum
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point to another. The amount of material moved is
unimportant since the design parameter wnz,/%

does not depend upon the mass of the pendulum.

We denote the prescribed motion of o by X(¢).
Writing F=ma in the direction perpendicular to the
pendulum string, we have:

— mg sind=mlb +mi, cosf (22)

Suppose the angle @ remains small so that we can
make the approximations:

sind=@ and cosf=1
Thus we have a differential equation for the pendu-

Jlum :

0+wﬁA—;; 23)

where w,= [

Suppose that we take the same displacement func-
tion that we chose for the motion of a mass in Fig.
2:

xo(t)zéD[l —cos( a)c,;t )}, 0<t<( Zﬂ)

n

_ an
=D £> (Z)Z) (23)

From (23), we need the second (time) derivative of x,
(¢). Thus (23) becomes :

0+ wif= <2Daa2);> os< w;t> (24)

where 0<¢< (%)E)

The initial conditions are:
§=6=0 (25)
For a particular solution to (24), we try:

Op= Qcos(wT"t> (26)

Inserting this in (24) and canceling the common
cosine terms, we get:

(- o=

or

0=—2(="1) @7)
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Adding the particular solution to the homogeneous
solution, we get :

D/ 1 al
8= —7{ g Joos 2L
+ Asin(wat)+ Bcos(wat) (28)

Imposing the conditions (25), we determine :

A=0, B=%<7-1_—1) (29)

Finally, we have the motion 8(¢):

0 =4z lcos(wnt)

—~cos< a:: t)], 0<t<t¢
=0, t>¢ (30)
At this point, we must determine the values of ¢
which give
6(t)= 6(t)=0 (1)

where ¢, =< Z)ﬂ )

n

Note that w.¢,=ar and %tf: 7. Thus from (30), we

obtain

6(ff)=2—D[<?1:T)[COS(a’7T) +1]

In order that 4(¢,)=0, we set cos(anr)=—1. Thus:
a=1,3,57, -

DIfferentiating (24) and evaluating at ¢,, we obtain :

000 =7( 1) gin(2)~sinCuont) |

a
Noting again that w.¢,=ar and 22 =g, if =1,
2, 3, .-+ the sine terms inside the brackets vanish.

Thus the values of ¢ and 4 are zero at t=¢, as
desired. Once again, we note that #=1 makes the
denominator in (30) vanish. Thus acceptable values
of @ are 3,5, 7, -+, @Qn+1).

The prescribed motion x,(¢)=0 and the response 4
(¢) are shown in Fig. 6. In order to fully understand
the results shown in Fig. 6, we must compute the
maximum amplitude of the response, Gpax.

If @ is equal to 3, it can be determined that |Gy
occurs at ¢t=0.304 ¢ and 0.696 ¢,. Plugging either
value in (30), we obtain ;

xo (t)

D/2

S == = - = - - .lh—:
[}
u/z ty=( ooy ) t

Fig. 6 The motion x,(¢) and the pendulum motion 4(¢)

9,,,“:0.096%7 (32)

and again, the final time is:

t=T (g=3) (33)

Wn

It is important to note that while y=3 gives the
minimum time to move the system a distance D as
well as the smoothest motion, the price which is paid
is that the maximum angle ¢ occurs at this value of
a. If we select ¢=5, 7, -, 2xn+1) the maximum
angle fnax will be reduced, but the time t, will be
extended and the motion will involve higher har-
monics not seen in the case ¢=3.

Suppose that we generalize the discussion by con-
sidering a compound pendulum instead of a simple
pendulum. A compound pendulum is a rigid body
which oscillates about a fixed horizontal axis
through the body as Fig. 7. We will find that the
fundamental design equations are essentially the
same as above. In addition, we consider the force F,
(¢) required to generate the motion.

From Fig. 7 we can determine that the two equa-
tions of motion for the system(assuming small angu-
lar motions 6(¢)) :

(mo+m)io+mld =F,(¢) (35)
Rewriting (34), we get :

9‘+wze:~( ’}f)xo (36)

where wn=1/ﬂ]§i

Jo:mass moment of inertia of the body

SRASHSTER /A4 A 135, 19943 ,/87
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J : distance from O to G(mass center)

As before, we use x(¢) from (24). Thus (36) becomes :

6+ k0= —( Dza;z,}nol >cos< cuc,;t > (387

Comparing this to (24) shows that we can replace

(2 l> in (24) and (27) by <D2§yil ) to get the results for

the present case.

g(t)= l;;;ﬂ(cfl 1>[cos(wnt)

eos( 28] 02

=0, t>¥ (38)

Similarly, we can determine nax(here for ¢=3):

Brax —0.096 Dj’”l (rad.) (39)

where ¢=3

and again, the final time is:

Fig. 7 The system: movement of a compound pendu-
lum
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Fig. 8 The force required to initiate the motion x,(¢)
for the movement of a pendulum movement
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L=(4) (40)

Wn
where ¢=3, 5,7, ---, @m+1)

To determine the force required to give the mo-
tion (38), we note the equation (35). Inserting x(¢)
from (3) and 4(¢) from (38) to (35), we get:

2F,

1

+mpoos( ) 14 Rat gz @D
(1)

_ L
ml*

where Rn=—"2

Notice that (41) is a function of both the mass
ratio R, and the moment of inertia ratio 3. In the
case of the simple pendulum, J,=m/% Thus g=1.If
we take R,=0.2 and ¢=3, the plot of (41) is that of
Fig. 8.

The minimum value of g is 1.0 (for a simple
pendulum of length /). Thus R,>0 and g=1. From

(41), the initial and final values of ( F . ) are :
Initial and Final
s
2F, 17 1
2, az[ B+1+Rm} (42)

Clearly if 3>1 and R,=>0, this quantity is greater
than or equal to zero.

4, Conclusions

Simply stated, a mass can be moved from point A
to point B without inducing residual vibration if we
use a [1—cos(wt)] specified motion where « is one
third (or one fifth ---) of the natural frequency w. of
the system which is being moved. Clearly, the motion
shape [1-—cos(wt)] term must be applied during the

time interval from ¢t=0to ¢= ff
n

. Taking a=3 gives

the smoothest transition from A to B in the mini-
mum time. In the case of the pendulum, the cost of
using @=3 is that the amplitude of the pendulum is
highest at that value of q.

A number of questions remain unanswered at this
point. For example we have considered only un-
damped single degree of freedom systems here.
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Future research will determine whether the ideas
here can be expanded to include the systems with
damping or the systems with several degrees of
freedom.® If there is damping in a single degree of
freedom system, we will not be able to bring % to
zero at the end of the cycle with the open loop
procedure outlined here. However, the procedure
given here could be used in conjunction with a
mechanical capture system or a closed loop control
to achieve the desired goal.
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