광재여 쌍안정 반도체 스위치에서 구리 불순물이
스위치 특성에 미치는 영향

Effects of Cu impurity on the switching characteristics of
the optically controlled bistable semiconductor switches

고 성택
(Sung-taek Ko)

Abstract

Cu compensated Si doped GaAs (GaAs:Si:Cu) has been chosen as the switch material. The GaAs material has been characterized by DLTS(Deep Level Transient Spectroscopy) technique and
the obtained data were used in the computer simulation. Simulation studies are performed on several GaAs switch systems, composed of different densities of Cu, to investigate the influence of deep traps in the switch systems. The computed results demonstrates important aspect of the switch, the existence of two stable states and fast optical quenching. An important parameter optimum Cu density for the switch are also determined.

Key Words(중요용어) : Bistable semiconductor switch(쌍안정 반도체 스위치), GaAs(갈륨비소), Cu impurity(구리 불순물)

1. 서론

반도체 내의 불순물 에너지 준위를 이용하여 만
든 광재여 쌍안정 스위치는 새로운 형태의 스위치
로서 기본적인 개념은 1988년 Schoenbach에 의해
서 처음 도입되었으며 스위치로서의 가능성을
CdS:Cu 시스템과 GaAs:Si:Cu 시스템에서 증명
되었다.

광재여 쌍안정 반도체 스위치(Optically Controlled Bistable Semiconductor Switch : OCBSS)는 여려가지 장점을 가지고 있다. 첫째, 스위치를 도
통(On)시키는데 그리기 쉬운 광에너지만 소비
되고 On상태를 유지하면서 광에너지의 소비되
지 않으므로 효율이 높다. 둘째, 다른 반도체 스위
치 소자와는 달리 pn 접합이 없으므로 소자의 크기에 제한을 받지 않는다. 셋째, 광흡수 갱 둔은 불순물 준위에 의한 흡수이므로 흡수 깊이(absorption depth)가 크고 또한 불순물의 농도를 조절함에 의
해서 흡수깊이의 조절이 가능하다. 넷째, 스위치의
제어가 광신호에 의해서 제어되므로 속도가 빠르
다. 이러한 장점들로 인해 OCBSS는 차세대 스위
치 소자로서 광장률을 받을 것으로 기대되고 있다.

스위치의 개념은 깊은 불순물 준위(deep impurity level)에 저장되어 있는 전자의 광이온화(photoionization)와 그 전자들에 대한 광소거(optical quenching)에 근거를 둔다. OCBSS의 스위치 동작
은 깊은 불순물 준위의 농도와 단면적(cross section)에 크게 의존하므로 깊은 불순물 준위에 대한
특성조사가 스위치를 만드는데 필수적이다. 반도체
내의 깊은 불순물 준위를 조사하는 방법은 여러가
지가 있으나 DLTS(Deep Level Transient Spectro-
scopy)방법이 널리 사용되고 있다. DLTS 방법
은 Lang에 의해서 소개되었다. 이 방법은 결정내
의 불순물의 스펙트럼을 양의 원편측으로 옮기
고 할수록 그 주파수를 옮기는 가장적인 방법에

* : 제주대학교 전자공학과
학사일자 : 1983년 7월 5일
학사학위 : 1984년 3월 17일

213
정한 경우를 제외하고는 일반적인 해가 없다. Sah는 SRH 모델을 근거로 새로운 물리적 상실을 최초 소개와 연관시켜 자유카리어의 수명을 해석할 수 있었으며 5) Demokan은 연속방정식을 풀어서 진정 Si의 양 전도율이 이론적으로 계산하였다. 6) Iverson과 Smith는 시간중속 convective/diffusive 연속방정식을 이용하여 InP: Fe의 전도전도성에 대해서 수치적인 해석을 하였다. 7)

본 연구에서는 광전도도에 대한 변화를 방정식 (rate equation)를 사용하여 OCBSS에 대해서 모델을 세우고 수치적 해법을 함으로써 기초의 연구 결과 23)에서 제공하지 못했던 여러 가지 현상을 즉 Cu 농도의 변화에 따른 전도도의 변화와 OCBSS의 스위칭 동작 구조를 규명하고자 한다. OCBSS에 대한 재료적 특성은 DLTS를 사용하여 조사하였고 그 결과는 스위치소자의 동작특성 해석을 위한 기초자료로서 사용되었다.

2. 스위치의 개념

광전도 발전소 전도체 스위치는 빛으로 반도체의 전도도를 증가 또는 감소시켜 스위치 작용을 하게 한 소자로서 GaAs에 같은 얇은 익세터 불순물(Cu)과 같은 도너 불순물(Si)을 참가하여 제작한다. 얇은 익세터와 같은 도너를 보상하게 되어 이 소자는 저항내의 경우로 변하게 된다. 즉 Fermi 준위가 금지대의 중앙 부근에 놓이게 된다. 따라서 대부분의 얇은 익세터에는 얇은 도너에서 제공된 전자들로 재배치된다. 여기서 얇은 익세터는 전하 캐리어를 저장하는 에너지 준위로서 작용하게 되며 그 동작원리의 다음과 같다.

그림 1은 간략화된 GaAs:Si/Cu 시스템을 보여주고 있다. GaAs 내에서 구리 불순분은 보통 두께의 에너지 준위를 생성하게 하며 그 결과는 보통 Ecu와 Ecub로 표시한다. 9) Ecu는 가전자대에서 0.14eV위 폭에 위치하며 Ecub는 가전자대에서 0.44 eV 위쪽에 위치한다. 스위치의 도장 혹은 전도도 증가의 얇은 익세터 준위(Ecu)에 저장되어 있는 전자를 광이온화 시켜서 전도도에 올려놓으므로 이득된다 (그림 1a 참조). 여기에 사용되는 비가 가전자대의 금지대폭(Eg = 1.42eV)보다 작고 Ecu-Ecub보다 큰 에너지 값을 갖는 빛 주 파장이 대략 980nm~1200 nm(1.26eV~1.03eV)되는 빛이 사용된다. 따라서 전자를 가전자대에서 전도도로 적절 광화 (direct band-to-band ionization) 하는 것은 가능하지만 가전자대에서 Ecu준위로 Ecub 준위에서 전도도로 광이온화는 2단계 이온화는 가능하다. 여기서 1.26 eV의 광자 에너지는 Ecu에서 전도도로 광이온화 위해서 필요한 에너지 1.28 eV보다 작으므로 Ecu에 광이온화 과정에 어두운 기여를 하지 못하게 된다. 이처럼 스위치의 전도도 증가(Turn-On)는 2단계 이온화에 의한다. Turn-On 하기위한 광 에너지가 없어진 후 Ecub에 트랩 (trap)된 전자들은 제발리 가전자대로 내려가게 된다. 이것은 Ecub의 총 포함된 면적 (capture cross-section : σp = 3 x 10^14 cm^2)이 매우 크기 때문이다. 9) 한편 광간은 자유전자는 가전자대에 재결합할 줄이 없기 때문에 계속 전도도에 머무르면서 전기 전도에 기여하게 된다. 물론 전도도에 머무르는 전자들은 다시 Ecub에 트랩될 수 있으나 Ecub 준위의 전자 포함면적 (σ = 8 x 10^12 cm^2)이 매우 작기 때문에 9) Ecub 준위에 다시 트랩되기까지에는 매우 오랜 시간이 걸린다 (그림 1b 참조). 따라서 이 스위치는 스위치를 트리거하는 데에 광 에너지가 필요하고 도장상태(낮은 전도도의 상태)를 유지하기 위해서는 광 에너지가 필요하지 않게된다.

스위치의 개방 즉 전도도의 감소는 전하 캐리어를 다시 얇은 익세터 준위에 저장하는것에 의해서 이루어진다. 그렇게 하기 위해서 빛의 광자 에너지가 Ecu-Ecub보다 작고 Ecub-Ecub보다 큰 에너지를 갖는 빛 중 주 파장이 대략 1400nm~2400 nm(0.89 eV~0.52 eV)되는 빛이 사용된다. 이러한 에너지를 갖는 빛은 단지 가전자대에 있는 전자를 얇은 익세터 준위로 되돌리기까지의 것만이 가능하며 가전자대에 정전이 생기게 한다. 따라서 전도도에 있는 전자는

![Image](https://example.com/image.png)
가전차대에 있는 정공과 계절함하여 없어지지 않다. 이하하여 과장이 대략 1400nm~2400nm의 빛은 전자를 가전차대에서 깊은 얇면서 측면(E_GaAs)로 여기서서 효과적으로 전도해 흘리는 전자를 제거하게 된다(그림 1c 참조). 이처럼 광자
이 전반적 반도체 스위치는 서로 다른 과장의 빛을 사용하여 스위치를 동작 또는 개방할 수 있다.

3. 스위치소자 제작

스위치 소자로 사용한 기본물질은 Morgan Semiconductor의 구입한 Si가 도핑된 n형 GaAs (N isi=5×10^{16} \text{cm}^{-3})에 Cu를 진공증착기에서 증착시킨 다음 furnace에서 650°C~750°C 사이 온도에서 Cu를 확산시켜 스위치를 제작하였다. 스위치소자에 사용한 기본 재료인 GaAs는 Si이나 Ge처럼 단일 물질로 이루어진 반도체가 아니므로 GaAs물질 자체가 갖는 결함이 많은 것으로 알려져 있고 있다. 특히 불순물 여러 종류를 이용하여 스위치 소자를 만들려고 하는 본 연구에서는 GaAs 물질 자체가 갖는 결함을 각각 높이게 하는 방법에 대하여 조사하는 것이 매우 필요하다. Cu를 도핑하기 전에 GaAs물질에 대한 결함을 DLTS 방법을 사용하여 조사하였으며 그 결과는 그림 2에서 보여주고 있다. 이 스케프트는 GaAs재료가 두개의 전자 트램을 갖고 있음을 보여주고 있다. 이러한 결함들은 결정성장시 생긴 원자간 결함들로서 외부에서 도핑에 의한 것이 아니며, 이 전자트램들은 EL2와 EL5로 명칭된 전자 트램으로 여겨진다. 이 불순물들의 에너지 준위는 일관된 DLTS 스케프트에서 얻어진 Arrehnium plot에서 얻어져, 그림 3은 이 점의 블립에 대한 Arrehnium plot을 보여주고 있다. 이 그림으로부터 EL2 준위는 전도체에서 0.83eV 떨어져 있고 EL5 준위는 전도체에서 0.41eV 떨어져 있으며 두 준위 모두 전자트램들의 관계된 것으로 보인다.

알은 도너 불순물인 Si를 보강하기 위한 것은 얇면서 측면(Cu)은 Cu 불순물 도핑에 따른 전도도는 전자결합성 조건을 이용하여 계산되어 전도도와 결합 결합을 이용하여 계산되어 갈추며 그 결과는 그림 4에서 보여주고 있다. 전자전도(conductive switch)는 스위치 공기와
누설전류를 줄이기 위해 가능한 한 높은 저항을 갖는 스위치 재료를 필요로한다. 그림 4는 Cu를 적절히 도핑하여 납은 도너를 보강하여 상 경의 높은 저항을 갖는 재료를 만들 수 있음을 보여주고 있다.

4. 광스위치소자의 스위치동작 특성해석

그림 2 GaAs 재료에서 측정된 DLTS 스펙트럼

Fig. 2 A DLTS spectrum measured on a GaAs sample.

그림 3 DLTS 스펙트럼에 대한 Arrhenius plot

Fig. 3 Arrhenius plots for the DLTS spectrum.

캐리어가 구속된 상태에서 자유상태로의 전이는 열이나 광에너지의 영향으로 인해 얻어진다. 캐리어의 자유상태로 전이되면서 그 캐리어는 다시 계율해하여 없어지거나 불순물 에너지 준위에 트랩될 때까지 그 물질의 전도도 증가에 기여하게 된다. 이러한 캐리어의 동작 특성은 아래의 변화를 방정식에 의해 기술될 수 있다.
온도 : 광전성 반도체 수지에서

그림 4 Si가 도핑된 GaAs체의 Cu농도 변화에 따른 전도도의 변화

Fig. 4 Conductivity as a function of density of diffused Cu in Si doped GaAs

\[
\frac{\partial n}{\partial t} = \frac{\beta h\nu \Phi^2}{2} + \sum_{i} n_{ni} \tau_{ni} + k_{np} \tau
\]

\[
- \sum_{i} n_{ni} \left(n_{ni} - n_{ni} \right) - k_{np} \tau
\]

\[
\frac{\partial p}{\partial t} = \frac{\beta h\nu \Phi^2}{2} + \sum_{i} n_{ni} \tau_{ni} - k_{np} \tau
\]

\[
+ \sum_{i} p_{ni} \tau_{ni} + k_{np} \tau
\]

\[
\frac{\partial n_{ni}}{\partial t} = (c_{ni} n + c_{ni} p + c_{ni} e_{ni}) n_{ni}
\]

여기서

\(n, p \): 자유전자, 자유 홀

\(N_{T} \): 전체 트램 농도

\(n_{T} \): 전자로 체워진 트램 농도

\(h\nu \): 광자 에너지

\(k_{d} \): 직접 대역간 재결합 계수

\(k_{a} \): Auger 재결합 계수

\(c_{ni} \): 전자, 홀 capture parameter

\(e_{ni} \): 전자, 홀 emission rate

\(\Phi \): 광자 flux

GaAs 스위치 소자의 동작특성에 대한 해석은 위의 미분방정식을 수치적으로 적분함에 기초를 두고 있다. 수치적 해석은 가변 에어그라프가 가능한 5차 Runge-Kutta 방법을 사용하였다. 수치해석에 사용된 각 파라미터들은 표 1에 열거되어 있다. 스위치에 대한 칼도의 계산은 Demokan 등이 사용한 방법을 사용하였다.

표 1 수치해석에 사용된 계수

<table>
<thead>
<tr>
<th>parameters</th>
<th>값</th>
<th>참고문헌</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_{n}) (CuB)</td>
<td>(8 \times 10^{-21}) cm²</td>
<td>(8)</td>
</tr>
<tr>
<td>(\sigma_{p}) (CuB)</td>
<td>(3 \times 10^{-14}) cm²</td>
<td>(8)</td>
</tr>
<tr>
<td>(\sigma_{no}) (CuB)</td>
<td>(10^{-17}) cm²</td>
<td>(9)</td>
</tr>
<tr>
<td>(\sigma_{po}) (CuB)</td>
<td>(10^{-16}) cm²</td>
<td>(9)</td>
</tr>
<tr>
<td>(\sigma_{n}) (EL2)</td>
<td>(4 \times 10^{-16}) cm²</td>
<td>(10)</td>
</tr>
<tr>
<td>(\sigma_{p}) (EL2)</td>
<td>(2 \times 10^{-18}) cm²</td>
<td>(10)</td>
</tr>
<tr>
<td>(\sigma_{no}) (EL2)</td>
<td>(8 \times 10^{-17}) cm²</td>
<td>(11)</td>
</tr>
<tr>
<td>(\sigma_{po}) (EL2)</td>
<td>(3 \times 10^{-17}) cm²</td>
<td>(11)</td>
</tr>
<tr>
<td>(\sigma_{n}) (EL5)</td>
<td>(5 \times 10^{-15}) cm²</td>
<td>(10)</td>
</tr>
<tr>
<td>(\sigma_{p}) (EL5)</td>
<td>(2 \times 10^{-18}) cm²</td>
<td>(10)</td>
</tr>
<tr>
<td>(\sigma_{no}) (EL5)</td>
<td>(10^{-17}) cm²</td>
<td>[8]</td>
</tr>
<tr>
<td>(\sigma_{po}) (EL5)</td>
<td>(10^{-17}) cm²</td>
<td>[8]</td>
</tr>
<tr>
<td>(\sigma_{n}) (CuA)</td>
<td>(8 \times 10^{-21}) cm²</td>
<td>[9]</td>
</tr>
<tr>
<td>(\sigma_{p}) (CuA)</td>
<td>(3 \times 10^{-14}) cm²</td>
<td>[9]</td>
</tr>
<tr>
<td>(\sigma_{no}) (CuA)</td>
<td>(10^{-17}) cm²</td>
<td>[8]</td>
</tr>
<tr>
<td>(\sigma_{po}) (CuA)</td>
<td>(10^{-16}) cm²</td>
<td>[8]</td>
</tr>
<tr>
<td>(\beta)</td>
<td>(26) cm/GW</td>
<td>(12)</td>
</tr>
<tr>
<td>(K_{a})</td>
<td>(10^{-33}) cm⁻⁶ s⁻¹</td>
<td>(13)</td>
</tr>
<tr>
<td>(K_{d})</td>
<td>(7 \times 10^{-10}) cm² s⁻¹</td>
<td>(14)</td>
</tr>
</tbody>
</table>

* 이 표시가 된 파라미터는 아직까지 규명되지 못한 값들로 적절한 값으로 설정되었다.
도도를 감소(Off) 시키기 위해서 사용되었다. 레이져 필스의 시간적 변화는 Gauss 분포를 갖는 것으로 가정하였으며 Turn-On 레이저의 첨도치는 t=30ns에 인가되고 Turn-Off 레이저의 첨도치는 t=170ns에 인가된다. 여러가지 불순물 농도에 대한 스위치의 동작특성을 살펴보기 위해서 많은 도너 농도 N ds 는 5×10^{10} cm^{-3}를 사용하였고 같은 양의 더 불순물 농도 N Cu는 4×10^{16} cm^{-3}에서 2×10^{17} cm^{-3}까지를 사용하였다.

5. 결론 및 고찰

그림 5는 스위치 동작에 대한 커피터 시뮬레이션 결과이며 스위치의 시간의 변화에 따른 전도도의 변화를 보여주고 있다. 이 그림은 스위치 소자의 전도도가 측관자에 의한 레이져 필스가 없어 진 후에도 On 상태의 높은 전도도가 유지되는 것을 보여주고 있으며 또한 Turn-Off 레이저의 인가는 스위치의 전도도를 감소시키고 있음을 보여 준다. 따라서 이 스위치는 On, Off 시키기 위하여 단지 트리거하기 위한 외부입력만으로도 작동할 수 있는 점으로서 주의를 요한다. 여기에 위치한 점선으로 표시된 전도도의 값은 Cu 농도가 5×10^{15} cm^{-3}인 경우이고 시간의 관찰로 표시된 전도도는 Cu 농도가 10^{17} cm^{-3}인 경우이며 측관자에 의한 점선으로 표시된 전도도는 Cu 농도가 5×10^{17} cm^{-3}인 경우를 나타낸다. 이 그림은 Cu_l가 10^{16} cm^{-3}보다 낮을 때에는 비교적 안정된 On 상태를 가짐을 보여주고 있으며 Cu_l가 10^{17} cm^{-3}보다 높을 경우에 스위치의 전도도가 매우 낮게됨을 보여주고 있다. 위의 결과들은 Turn-On과 Turn-Off 레이저의 광자 flux가 모두 10^{25} cm^{-2} s^{-1} (1.8MW/cm^{2})일 때의 스위치의 전도도의 변화이며 이 결과는 실제 스위치 소자에서 측정된 전도도의 변화의 형태와 잘 일치한다.31

그림 6은 Cu 농도의 변화에 대한 전도도 변화율을 보여주고 있다. 여기서 Peak로 표시된 전도도의 값은 Turn-On 레이저가 인가된 후 스위치의 전도도가 최대일 때의 값이다. On으로 표시된 전도도의 값은 150ns에서의 전도도를 나타내고 Off로 표시된 전도도의 값은 200ns에서의 전도도를 나타낸다. 이 그림에서 보면 On 상태는 낮은 Cu 도체로 회복되는 과정으로 Off상태는 높은 Cu 도체로 회복되는 과정을 반복한다. 흔히 위의 포르스화로 설명할 수 있다. 하여하면 On상태는 가능향한 것과 같은 전도도가 되어있고 Off상태는 가능향한 전도도가 높아야 할 때가 때문이다. 그림 7은 스위치의 Turn-On특성을 보여주는 그림으로 Cu농도의 변화에 대한 On 상태 전도도의 변화율을 보여주고 있다. 여기서 세로축은 On 상태의 전도도 (σ_{on})를 최대 전도도 (σ_{peak})로 나눈 값을 나타내고
본 연구에서는 Si 이 도핑된 GaAs에 Cu를 보상한 물질을 양극장 밀도체스위치 소자로써 사용하였다. 기본 물질인 GaAs는 DLTS방법에 의해 결정이 조사되었으며 EL2 준위와 EL5 준위의 기본으로 존재함을 알 수 있었다. 변화를 방정식을 통해 여러가지 Cu 도핑에 대한 소위 특성에 대한 것으로부터 다음의 사실이 알 수 있었다.

첫째 Cu로 도핑시킨 GaAs는 준 안정된 On상태 (높은 전도도의 상태)를 갖는다. (즉 방향성을 갖는다.)

둘째 광 에너지를 사용하여 자유 캐리어를 소거 할 수 있다. (레이저를 사용하여 소위의 전도도를 낮출 수 있다.)

셋째 소위의 Turn-On 특성은 Cu가 낮을 수록 높고 전–Turn-Off 특성은 낮아지므로 ON/OFF = 5× 10^6cm^-3일 때 ON/OFF = 10^7cm^-3정도가 방향성 소위로서 가장 적절한 도도이다.

※ 이 논문은 1992년 한국 학술장학재단의 연구 비 지원에 의해 연구되었음.

참고문헌

15. Morgan Semiconductor Div., Ethyl Corp., Garland, TX 75047-2367, USA.

저작소개

고성택