A Study on the Low Temperature Epitaxial Growth of $CoSi_2$ Layer by Multitarget Bias cosputter Deposition and Phase Sequence

Multitarget Bias Cosputter증착에 의한 $CoSi_2$층의 저온정합성장 및 상전이에 관한 연구

  • Park, Sang-Uk (Dept. of Metallurgical Engineering, Yonsei University) ;
  • Choe, Jeong-Dong (Dept. of Metallurgical Engineering, Yonsei University) ;
  • Gwak, Jun-Seop (Dept. of Metallurgical Engineering, Yonsei University) ;
  • Ji, Eung-Jun (Dept. of Metallurgical Engineering, Yonsei University) ;
  • Baek, Hong-Gu (Dept. of Metallurgical Engineering, Yonsei University)
  • Published : 1994.02.01

Abstract

Epitaxial $CoSi_2$ layer has been grown on NaCl(100) substrate at low deposition temperature($200^{\circ}C$) by multitarget bias cosputter deposition(MBCD). The phase sequence and crystallinity of deposited silicide as a function of deposition temperature and substrate bias voltage were studied by X-ray diffraction(XRD) and transmission electron microscopy(TEM) analysis. Crystalline Si was grown at $200^{\circ}C$ by metal induced crystallization(M1C) and self bias effect. In addition to, the MIC was analyzed both theoretically and experimentally. The observed phase sequence was $Co_2Si \to CoSi \to Cosi_2$ and was in good agreement with that predicted by effective heat of formation rule. The phase sequence, the CoSi(l11) preferred orientation, and the crystallinity had stronger dependence on the substrate bias voltage than the deposition temperature due to the collisional cascade mixing, the in-situ cleaning, and the increase in the number of nucleation sites by ion bombardment of growing surface. Grain growth induced by ion bombardment was observed with increasing substrate bias voltage at $200^{\circ}C$ and was interpreted with ion bombardment dissociation model. The parameters of $E_{Ar}\;and \alpha(V_s)$ were chosen to properly quantify the ion bombardment effect on the variation in crystallinty at $200^{\circ}C$ with increasing substrate bias voltage using Langmuir probe.

Multitarget bias cosputter deposition(MBCD)에 의해 저온($200^{\circ}C$)에서 NaCI(100)상에 정합$CoSi_2$를 성장시켰다. X-선회절과 투과전자현미경에 의해 증착온도와 기판 bias전압에 따른 각각 silicide의 상전이와 결정성을 관찰하였다. Metal induced crystallization(MIC) 과 self bias 효과에 의해 $200^{\circ}C$에서 기판전압을 인가하지 않은 경우에도 결정질 Si이 성장하였다. MIC현상을 이론 및 실험적으로 고찰하였다. 관찰된 상전이는 $Co_2Si \to CoSi \to Cosi_2$로서 유효생성열법칙에 의해 예측된 상전이와 일치하였다. 기판 bias전압 인가시 발생한 이온충돌에 의한 충돌연쇄혼합(collisional cascade mixing), 성장박막 표면의 in situ cleaning, 핵생성처(nucleation site)이 증가로 인하여 상전이, CoSi(111)우선방위, 결정성은 증착온도에 비해 기판bias전압에 더 큰 영향을 받았다. $200^{\circ}C$에서 기판 bias전압을 증가시킴에 따라 이온충돌에 의한 결정입성장이 관찰되었으며, 이를 이온충독파괴(ion bombardment dissociation)모델에 의해 해석하였다. $200^{\circ}C$에서의 기판 bias전압증가에 따른 결정성변화를 정량적으로 고찰하기 위해 Langmuir탐침을 이용하여 $E_{Ar},\; \alpha(V_s)$를 계산하였다.

Keywords

References

  1. J. Vac. Sci. Technol. v.17 S.P.Muraka
  2. J. Appl. Phy. v.49 S.S.Lau
  3. Appl. Phy. Lett. v.48 no.2 J.C.Hensel
  4. Silicides for VLSI Applications S.P.Muraka
  5. J. Appl. Phy. v.47 no.6 J.E.Greene;C.E.Wickersham
  6. J. Appl. Phy. v.59 no.8 Karl Heinz Muller
  7. J. Vac. Sci. Technol. v.A4 no.2 Karl Heinz Muller
  8. J. Vac. Sci. Technol. v.21 no.2 J.E.Greene;S.A.Barnett
  9. J. Appl. Phy. v.62 no.8 James H. Comfort
  10. J. Appl. Phy. v.68 no.9 S.F.Gong;H.T.G.Hentzell
  11. Glow Discharge Processes Brain Chapman
  12. The Korean Institute of Metals and Materials, Spring Meeting A Study on the Growth of Epitaxial CoSi₂Layer by Multitarget Bias Cosputter Deposition S.W.Park;H.K.Baik
  13. J. Appl. Phy. v.64 no.12 G.K.Wehner
  14. J. Appl. Phy. v.55 no.12 K.C.Cadien;B.C.Muddle;J.E.Greene
  15. J. Appl. Phy. v.70 R.Pretorius;A.M.Vredenberg;F.W.Saris
  16. Acta Metall. v.24 A.M.Brown;M.F.Ashby
  17. J. Vac. Sci. Technol. v.A6 no.3 K.Markert;P.Dolle;J.W.Niemantsverdriet;K.Wandelt
  18. Binary Alloy Phase Diagrams(2nd ed.) v.2 Massalski
  19. J. Vac. Sci. Technol. v.A6 no.4 B.Window;F.Sharples;N.Savvides
  20. Appl. Phy. Lett. v.37 no.7 J.C.Bean;J.M.Poate
  21. Appl. Phy. Lett. v.40 no.8 R.T.Tung;J.C.Bean
  22. J. Electrochem. Soc. v.115 E.Klokholm;B.S.Berry
  23. Physics of Thin films(2nd ed.) Ludmila Eckertova
  24. Thin Films and Beam Solid Interactions Shozheng Wang;Guangcheng Xing;Huang(ed.)
  25. J. Vac. Sci. Technol. v.21 no.3 P.Zineman;E.Kay
  26. J. Appl. Phy. v.43 J.W.Coubrn;E.Kay
  27. Plasma Diagnostics v.2 Orland Auciello;Daniel L. Flamm
  28. Glow Discharge Processes Brain Chapman
  29. Glow Discharge Processes Brain Chapman
  30. Handbook of Thin Film Technology Leon I. Maissel;Reihard Glang
  31. Nucleation and Growth of Thin Films B.Lewis;J.C.Anderson
  32. The Materials Science of Thin Films Milton Ohring
  33. Silicides for VLSI Applications S.P.Muraka
  34. Phy. Rev. Lett. v.12 D.Gupta;K.N.Tu;K.W.Asai
  35. J. Vac. Sci. Technol. v.20 J.J.Cuomo;J.M.E.Harper
  36. J. appl. Phy. v.45 H.F.Winters;P.Sigmund
  37. MRS v.10 Thin Films and Interfaces J.M.Gibson;J.C.Bean;P.S.Ho(ed.);K.N.Tu(ed.)
  38. Electron Diffraction in the Electron Microscope, Monograph Two J.W.Edington
  39. Surf. Sci. Lett. v.L375 Karl Heinz Muller
  40. J. Vac. Sci. Technol. v.A8 no.3 C.H.Choi;L.Hultman;S.A.Barnett