The Effects of Deposition Conditions on Deposition Rate and Crystallinity of ZnO Thin Films Deposited by PECVD

PECVD를 이용한 ZnO박막 증착시 증착 변수가 증착속도 및 결정 구조에 미치는 영향

  • Kim, Yeong-Jin (Dept.of Matersials Science and engiveerisng, Kyonggi University) ;
  • Kim, Hyeong-Jun (Dept.of Inorganic Materials Engineering,Seoul National University)
  • 김영진 (경기대학교 재료공학과) ;
  • 김형준 (서울대학교 무기재료공학과)
  • Published : 1994.02.01

Abstract

ZnO thin films were deposited using Diethylzinc and $N_{2}O$ gas by plasma enhanced CVD (PECVD) at low substrate temperatures below $300^{\circ}C$. The effect of deposition parameters on the growth rate and the structural properties was determined at various deposition conditions. Crystallized ZnO thin films were successfully deposited even at $150^{\circ}C$ of substrate temperature. Above $200^{\circ}C$ c-axis oriented ZnO thin films, of which a standard deviation of X-ray rocking curve was less than $6^{\circ}$. were deposited on glass substrates. The variation of deposition rate showed different trends depending on substrate temperature and rf-input power. According to the deposition rate behavior as a function of substrate temperature, the transition points were observed resulting from crystallization of ZnO thin films. The activation energies for the deposition of ZnO thin films were 3.1KJ/mol and 1.9KJ/mol for the rf powers of 200W and 250W, respectively.

플라즈마 CVD(PECVFD)장치로 금속유기물인 Diethylzinc와 $N_{2}O$를 합성하여 $300^{\circ}C$이하의 낮은 기판 온도에서 ZnO 박막을 증착하여, 증착변수가 박막의 증착속도 및 결정구조에 미치는 영향을 알아 보았다. 기판 온도 $150^{\circ}C$에서부터 이미 결정화된 ZnO 박막의 증착이 가능했으며, $200^{\circ}C$이상에서 X-ray rocking curve분석결과, 표준편차값($\delta$)이 6˚ 미만의 c축 배향성이 뛰어난 ZnO박막이 유리 기판위에 증착되었다. 기판온도오 인가된 rf전력에 의한 증착속도의 변화 양상은 매우 다양하였으며, 특히 결정화에 따른 증착속도 변화의 전이점이 관찰되었다. 200 W와 250W의 rf 전력에서 증착된 박막의 경우 활성화 에너지는 각각 3.1 KJ/mol과 1.9 KJ/mol이었다.

Keywords

References

  1. 電子 通信學會 論文誌(C) v.J63-C 정田光三;涉谷正信;村山洋一
  2. J. Cryst. Growth v.45 T.Tagaki;I.Yamada
  3. J. Appl. Phys. v.51 no.8 J.A.Aranovich;D.Golmayo
  4. J. Vac. Sci. Technol. v.16 no.4 J.A. Aranovchi;A.D.Oritz;R.H.Bube
  5. Mat. Res. Bull. v.24 P.Wu;Y.M.Gao;J.Baglio;R.Kershaw
  6. J. Mater. Res. v.3 no.4 P.Souletie;B.W.Wessels
  7. J. Cryst. Growth v.66 P.J.Wright;R.J.M.Griffith;B.Cockayne
  8. Appl. Phys. Lett. v.37 no.5 S.K.Ghandhi;R.J.Field
  9. Appl. Phys. Lett. v.43 no.12 F.T.J.Smith
  10. J. Electrochem. Soc. v.127 no.8 C.K.Lau;S.K.Tiku;K.M.Lakin
  11. J. Electrochem. Soc. v.128 A.P.Roth;D.F.Williams
  12. J. Cryst. Growth v.71 M.Shimizu;Y.Matasueda;T.Shiosaki
  13. 電子通信學會技術硏究報告, US73-37 M.Minakata;N.Chubachi;Y.Kikuchi