A Study on the Effents of High Temperature Heat Treatment on the Physical and Mechanical Properities of Carbon Fiber and Carbon Composites

탄소섬유 및 탄소복합재의 물리적/기계적 특성에 대한 고온열처리의 영향 연구

  • 김동규 (국방과학연구소 고분자 복합재료연구실) ;
  • 하헌승 (국방과학연구소 고분자 복합재료연구실) ;
  • 박인서 (국방과학연구소 고분자 복합재료연구실) ;
  • 임연수 (국방과학연구소 고분자 복합재료연구실) ;
  • 윤병일 (국방과학연구소 고분자 복합재료연구실)
  • Published : 1994.05.01

Abstract

PAN-based carbon fiber roving and fabric were heat treated at the temperature of $2170^{\circ}C$. Using non-heat treated and heat treated fabric, greenbodies of CFRP and GFRP were manufactured in the Autoclave. After the analysis of heat treated and non-heat treated carbon fiber roving and two types of greenbodies, the variations of physical and mechanical properties of carbon fibers and greenbodies with heat treatment were studied. Observing the cross-section of carbon fiber with SEM, we knew the diameter of carbon fiber was decreased from 6.8gm to 6.4p1. The results of TGA showed that the oxidation resistence was enhanced after heat treatment. The tensile strength of carbon fiber was decreased from (3.11$\pm 0.32)\times 10^3$ MPa to (1.87$\pm 0.26)\times 10^3$MPa, but tensile modulus was increased from (1.94$\pm 0.06)\times 10^5$ MPa to (2.02$\pm 0.11)\times 10^5$MPa after heat treatment. The interlaminar shear strengths of CFRP and GFRP were 148.8$\pm$1.6Mpa and 82.2$\pm$1.1Mpa, respectively. Torch test showed that CFRP was abraded smoothly but GFRP was delaminated.

PAN계 탄소섬유 roving 및 fabric을 $2170^{\circ}C$에서 열처리 하였다. 열처리를 행하지 않은 탄소섬유 fabric과 행한 것을 사용하고, Autoclave를 이용하여, CFRP와 CFRP의 성형체를 제조하였다. 열처리를 행한 탄소섬유 roving과 행하지 않은것 및 두종류의 성형체의 분석을 통하여, 열처리에 따른 탄소섬유 및 탄소복합재의 물리적. 기계적 특성변화를 연구하였다. 열처리 후 성유의 단면을 주사전자현미경으로 관찰한 결과 탄소섬유의 직경이 6.8$\mu \textrm{m}$에서 6.4$\mu \textrm{m}$으로 감소하였으며, 열중량분석을 행한 결과 내산화성이 증진되었음을 알았다. 단섬유인장실험 결과 인장강도는 탄소섬유의 (3.11$\pm 0.32)\times 10^3$ MPa 에서 열처리 섬유의 (1.87$\pm 0.26)\times 10^3$MPa으로 감소되었으나, 탄성율은 탄소섬유의 (1.94$\pm 0.06)\times 10^5$ MPa에서 열처리 섬유의 (2.02$\pm 0.11)\times 10^5$MPa으로 증가하였다. 층간전단강도 측정 실험을 한 결과 그 값이 CFRP(148.8$\pm$1.6Mpa)가 CFRP(82.2$\pm$1.1Mpa)에 비하여 높음을 알 수 있었고, torch test 결과 CFRP는 층간분리 없이 매끄러운 삭마가 일어나나, GFRP는 층간분리가 발생함을 알 수 있었다.

Keywords

References

  1. Carbon v.27 no.621 PAN-based Carbon fibers-present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters E. Fitzer
  2. The Metallugical Society of AIME State of Art H. M. Syoller;J. D. Theis;B. L. Butler;M. L. Liberman
  3. Carbon Fibers J. B. Donnet;R. C. Bansal
  4. High Temperature-High Pressure E. Fitzer
  5. J. Mater. Sci v.6 no.1225 The effect of fiber diameter on the mechanical properties of graphite fibers manufactured from Polyacrylonitrile and Rayon B. F. Jones
  6. HTHP ETPC Proc. v.10 no.19 W. Frohs;E. Fitzer;F. Rozploch
  7. Carbon v.25 no.163 The future of Carbon/Carbon Composites E. Fitzer
  8. Chemistry and Physics of Carbon v.7 The Kinetics and Mechanism of Graphitization D. B. Fischbach
  9. Chemistry and Physics of Carbon v.16 The catalyzed gasification reactions of carbon D. W. McKee
  10. Carbon-Carbon Composites G. Savage
  11. Nature v.222 no.690 Moreton, R;Watt, W;Johnson, W.
  12. J. Phys. D:Appl. Phys. v.3 Johnson. D, J;Tyson, C, N.
  13. J. Mater. Sci. v.6 no.289 Jones, B. F;Duncan, R. G.
  14. Carbon fiber surface treatment, NOLTR 71-165 Larsen, J. V.;Smith, T. G.;Erickson, P. W.
  15. J. Adhesion v.5 no.211 Daukeys, R. J.