The Effect of Hydrocarbon Content and Temperature Distribution on The Morphology of Diamond Film Synthesized by Combustion Flame Method

연소 화염법에 의해 합성된 다이아몬드형상에 미치는 탄화수소량과 온도분포의 영향

  • 김성영 (생산기술연구원 생산시스템 개발센타) ;
  • 고명완 (생산기술연구원 생산시스템 개발센타) ;
  • 이재성 (한양대학교 금속재료공학과)
  • Published : 1994.08.01

Abstract

The diamond synthesis by combustion flame method is considerably affected by the substrate surface temperature and its distribution which are mainly controlled by the ratio of mixed gas, $O_2/C_2H_2$. In order to elucidate the role of gas ratio in the diamond synthetic process by combustion flame, under various gas ratios (R=0.87~0.98; R=ratio of flow-rate of $O_2/C_2H_2$ gas) the substrate temperature was measured by using thermal video system and the morphological change of diamond crystals was analysed by using SEM, Raman spectroscope, and X-ray diffraction method. With increasing the gas ratio, i.e., decreasing the hydrocarbon content, the nucleation rate of diamond crystal was lowerd. It was also found that the morphology of diamond crystals changed from the cubo-octahedron type consisting of (100), (111) plane to the octahedron type of (111) plane. The increase of the substrate temperature consistently resulted in the increase of the nucleation rate as well as the growth rate of diamond crystals in which the surface of diamond crystal dominantly consisting of (100) plane.

연소화염법을 이용한 다이아몬드 박막합성시 기판표면온도 및 온도분포에 가장 크게 작용하는 공정변수는 탄화수소량을 결정하는 산소/아세틸렌 가스의 혼합비(R=O/sub 2/C/sub 2/H/sub 2/)이다. 본 연구에서는 혼합가스비율 변화 (R=0.87-0.98)에 따른 기판표면온도 및 온도분포를 측정하고, 이들 변수에 따른 다이아몬드 박막의 생성 및 결정형상의 변화과정을 SEM관찰, Raman 분광분석 및 X-선 회절 분석을 통해 조사하였다. 혼합가스비율의 증가에 따라 다이아몬드의 생성입자 수밀도는 감소하였고, 이와 동시에 결정형상도 (111)면과 (100)면이 혼재된 cobo octahedron형에서 octahedron인 (111)면으로 변화되었다. 한편, 기판온도증가에 따라 생성입자의 수밀도가 증가하고 성장속도도 빨라져 조대한 결정을 얻었으며, 생성된 입자형성은 (111)면애 지배적이다가 (100)결정면이 점차 많아지는 양상을 나타내었다.

Keywords

References

  1. Jpn. Appl. Phys, 1988 Spring Metting Program and Book of Abstracts Y. Hirose;N. Kondo
  2. Proc. 1st Int. Symp. on Diamond and Diamond-Like Films. Y. Hirose;S. Amanuma;N. Okada;K. Komaki
  3. Jpn. J. Appl. Phys. v.28 Y. Matsui;A. Yuuki;M. Sahara;Y. Hirose
  4. Phys. Rev. B. v.38 no.6 K. Kobashi;K. Nishimura;Y. Kawate;T. Horiuchi
  5. Appl. Phys. Lett. v.52 K. Kurihara;K. Sasaki;M. Kawarada;N. Koshino
  6. Metall. Trans. v.20A W.A. Carrington;L.M. Hanssen;K.A. Snail;D.B. Oakes;J.E. Butler
  7. J. Appl. Phys. v.68 no.12 Y. Hirose;S. Amanuma;K. Komaki
  8. J. Mater. Res. v.5 no.11 H.A. Hoff;A.A. Morish;J.E. Butler;B.B. Rath
  9. 1991 MRS Int. Conf. Proc New Diamond Science and Technology M.A. Cappelli
  10. 대한금속학회지 v.29 no.6 신예식;최성조
  11. J. Mater. Res. v.5 no.11 K.V. Ravi;C.A. Koch;H.S. Hu;A. Joshi
  12. New Diamond Forum v.5 no.4 M. Kamo
  13. J. Mater. Sci. v.17 S. Matsumoto;Y. Sato;H. Tsutsumi;N. Setake
  14. Phy. Rev. B v.38 no.6 K. Kobashi;K. Nishimura;Y. Kawata;T. Horiuchi
  15. Advances in X-ray Analysis v.31 A.R. Badzian;C.S. Barret(ed.);J.V. Gilfrich(ed.)R. Jehkins(ed.);J.C. Russ(ed.);J.W. Richardson(ed.);P.K. Predecki(ed.)