Microstructures and Tensile Characteristics of Ti-6AI-4V Alloy by Double Solution Treatment

2중 용체화처리에 따른 Ti-6AI-4V합금의 미세조직과 인장특성

  • Published : 1994.09.01

Abstract

The relationship between microstructures and tensile properties depending on various solution treatment temperature and cooling rate of Ti-6A1-4V alloy have been investigated. The complex and random edge shaped $\alpha$ phases were formed after the 1st solution treatment at $\beta$ region and the 2nd solution treatment at $900^{\circ}C$, which was followed by furnace cooled. When the specimen was subjected to the 2nd solution treated at $950^{\circ}C$, and furnace cooled, $\alpha$ phase changed its morphology to equiaxed structure. The aspect ratio showing the appreciation basis of microstructual refinement decreases with the temperature of 1st and 2nd solution treatment. The slightly decrease in strength were observed in the Widmanstltten structures than in the bimodal structures. Also, ductility of the Widmanstatten structures was considerable lower than that of bimodal structures. The tensile-fractured surface of the Widmanstatten structures appears to be quasi-cleavage and dimple fracture, while that of the bimodal structures was the type of ductile fracture. The tensile fracture surface of the bimodal structures can easily be separated into cental crack areas lying generally perpendicular to the tensile axis and shear lip areas lying at angles of high shear(around 45 deg.) to the tensile axis.

Ti-6Ai-4V 합금의 미세조직을 용체화처리온도 및 냉각속도만의 변화로서 Widmanstatten 조직과 이중조직을 얻은 후 이들 미세조직과 인장성질고의 비교. 검토를 통해서 최적 열처리 방안을 설정하고자 하였다. 그 결과 Widmanstatten 조직에 있어서는 열처리온도나 냉각속도에 따라 복잡하고 무질서한 dege형상의 $\alpha$상 및 등축화된 $\alpha$상으로변화시킬 수 있었으며, $\alpha$+$\beta$ 영역에서 2중 용체화 처리의 경우 1차 및 2차 용체화처리 온도가 낮을수록 aspect비는 작아짐을 알 수 있었다. 인장성질에 있어서 Widmanstatten 조직은 이중조직에 비해 강도는 감소하고 연성성질 또한 크게 감소하였으며, 파단양상 Widmanstatten 조직의 경우 준벽개와 dimple형 파단양상이 함께 나타나는 반면 이중조직은 연성파괴를 나타내었다. 또한 이중조직의 파단면을 인장축에 수직인 내부균열영역과 45˚ 정도의 전단각을 갖는 shear lip영역으로 나누어 관찰할 수 있었다.

Keywords

References

  1. 金屬 チタンとその應用 草道英式;村上陽一郞;木村啓造;和泉修
  2. チタン およぴ チタン合金特集號 v.72 鐵と鋼
  3. Titanium'80 Science and Technology v.1 M. Margolin;J. C. Williams;J. C. Chestnutt;G. L$\"{u}$tjering
  4. 6th World Conference on Titanium P. J. Bania
  5. Titanium technology D. Eylon;S. Fujishiro;P. J. Postans;F. H. Fors
  6. Titanium Science and Technology P. A. Blenkinsop;G. L$\"{u}$tjering(et al.) (Eds.)
  7. Metall.Trans. A v.12 K.S. Chan;C.C. Wojick;D.A. Koss
  8. Metall.Trans. A v.13 A. Gysler;G. L$\"{u}$tjering
  9. Metall. Trans. A. v.15 F. S. Lin;E. A. Starke, Jr.;S. B. Chakrabortty;A. Gysler
  10. Metall. Trans. A v.15 F. S. Lin;E. A. Starke,Jr.;A. Gysler
  11. J. of Korean Inst. of met. & Mater. v.11 H.G. Kang;H.K. Cho
  12. Trans. AIME v.3 R.L. Fullman
  13. Titanium Science and Technology I. Weiss;F.H. Froes;D. Eyon;G. L$\"{u}$tjering(ed.);U. Zwicker(ed.);W. Bunk(ed.)
  14. Metal. Trans. A v.14 D. Banerjee;D. Mukherjee;R.L. Saha;K. Bose
  15. Titanium'80 Science and Technology v.1 J. C. Williams;G. L$\"{u}$tjering
  16. 硏究技報(LIST) v.4 裵起晩;金成柱;金鍾洙
  17. Metal. Trans. A v.21 D.D. Makel;D. Eylon
  18. Metal. Trans. A v.9A H. Margolin;Y. Mahajan