Characterization of Atomic Structure in Rapidly Solidified Amorphous Silicon

급냉응고된 비정질 실리콘 분말의 원자구조에 관한 연구

  • Kim, Yeon-Ok (Dept.of Materials Engineering, Keimyung University)
  • 김연옥 (계명대학교 재료공학과)
  • Published : 1994.09.01

Abstract

The submicron powders of high-purity silicon have been produced by Electrohydrodynamic Atomization. Field-emission scanning transmission electron microscopy(STEM) is used to determine the microstructure and solidification phase. .Then it is found that the droplets less than 60nm diameter are solidified as the amorphous phase. A useful and accessible characterization of atomic arrangements in amorphous solids can be given in terms of a radial distribution function. According to experimental determinations of the radial distribution function for amorphous silicon, its similarity to the crystalline structure at small radial distances indicates that the basic tetrahedral arrangement found in the diamond cubic structure of silicon must be maintained in the amorphous structure.

Electrohydrodynamic Atomization 급냉응고장치를 이용하여 고순도 실리콘 미세분말을 제조하여 투과전자현미경으로 미세조직과 그 응고상을 조사한 결과 직경이 60nm 이하인 분말에서 비장질상이 발견되었다. 비정질 실리콘의 원자구조를 분석하기 위하여 비정질 분말에서 얻은 전자회절 데이타를 이용하여 radial distribution function을 계산하여 해석한 결과, 실리콘의 결정구조인 다이아몬드 입방격자에서 발견되는 기본적 정사면체 배열이 비정질 실리콘의 2번째 근접원자간 거기까지 유지됨을 알 수 있었으며 이로부터 비정질 실리\ulcorner이 단범위 규칙성을 갖는 tetrahedrally coordinated random network 원자배열로 이루어짐을 알았다.

Keywords

References

  1. J. Res. Natn. Bur. Stand. v.44 A. Brenner;D.E. Couch; E.K. Williams
  2. Scripta Met. v.100 L.A. Davis; R. Ray;C.P. Chou;R.C. Ohandley
  3. J. Appl. Phys. v.36 P. Duwez;R.H. Willens;R.C. Crewdson
  4. IEEE Trans. Magll E.E. Luborsky;J.J Becker.;R.O. MeCary
  5. J. Japan. Metals v.38 M. Naka;K. Hashmoto;T. Masumoto
  6. Mater. Sci. Eng. v.23 Second Internat. Conf. on Rapidly Quenched Metals, Section II K. Hashimoto;T. Masumoto;N. J. Grant(ed);B. C. Giessen(eds)
  7. Phys. Stat. Solid(a) v.8 L.B. Davies;P.J. Grundy
  8. Phil. Mag. v.30 P.K.Leung;J.G. Wright
  9. Phys. Rev. Lett v.42 R. Tsu;R.T. Hodgson;T.Y. Tan;J.E. Balglin
  10. Phys. Rev. Letters v.27 D.E. Sayers;E.A. Stern
  11. Acta Metall v.37 no.1 Y.W. Kim;H.M. Lin;T.F. Kelly
  12. Rapid Solidification Processing Principles and Technologies J. Perel;J.F. Mahoney;B.E. Kalensher;K.E. Vicker;Mehrabian;R. Mehrabian(ed);B.H. Kear(ed);M. Cohen(eds)
  13. Rapid Solidification Processing Principles and TechnologiesⅡ J. Perel;J.F. Mahoney;P. Duwez;B.E. Kalensher;R. Mehrabian(ed);B.H. Kear(ed)M. Cohen(eds)
  14. Acta Metall v.36 Yeon-Wook Kim;Hong-Min Lin;Thomas F. Kelly
  15. Solid State Physics v.30 G.S. Cargill;F.Seitz(ed);D.Turnbull(ed);H. Ehrnreich(ed)
  16. J. Phys : Meta Phys v.7 S.S.Nandra;P.J. Grundy
  17. Acta Cryst. v.15 G.H. Smith;R.E. Burge
  18. J. Non-Cryst. Solids v.11 L.B. Davies;P.J. Grundy
  19. Mat. Res. Soc. Symp. Procd. v.62 A.R. Pelton;P. Moine;M.A. Moak;R. Sinclair
  20. Poc. In-tern. Conf. on the Physics of Semiconductors J.F. Graczyk;S.C. Moss
  21. J. Non-Cryst. Solids v.5 D.E. Polk
  22. J. Non-Cryst. Solids v.8 no.10 D. Henderson;F. Herman