Physical and Electrical Characteristics of Wet Oxidized LPCVD Silicon Nitride Films

습식 산화한 LPCVD Silicon Nitride층의 물리적, 전기적 특성

  • Lee, Eun-Gu (Dept.of Inorganic Materials Engineering, Seoul National University) ;
  • Park, Jin-Seong (Dept.of Inorganic Materials Engineering, Seoul National University)
  • Published : 1994.09.01

Abstract

The physical and electrical characteristics of sub-l0nm thick capacitor dielectrics formed by wet oxidation of silicon nitride(oxide/nitride composite) and by removing the top oxide of oxidized silicon nitride(0xynitride) are described. For the capacitors with an oxide/nitride composite layer, the capacitance decreases sharply, but the breakdown field increases with an increase in the wet oxidation time at $900^{\circ}C$. For the capacitors with oxynitride layers, the values of both the capacitance and the breakdown field increase with increasing wet oxidation time. The reduction of effective thickness and the improved quality of oxynitride film are responsible for the improved capacitance and increased breakdown fields, respectively. In addition, intrinsic TDDB characteristics and early breakdown failure rate of oxynitride film are improved with increasing oxidation time. Consequently, the oxynitride film is suitable for dynamic memories as a thin dielectric film.

실리콘 질화막을 습식 산화하여 제작한 산화막/질화막 복합층과 이 박막의 산화막을 식각하여 제작한 oxynitride 박막의 물리적, 전기적 특성을 기술하였다. $900^{\circ}C$에서 산화시간이 증가함에 따라 산화막/질화막의 경우에는 축전용량은 급격히 감소하였으나 절연 파괴전장은 증가하였다. Oxynitrite박막은 축전용량과 절연파괴 전장이 모두 증가하였다. Oxynitride박막의 경우 축전 용량의 증가와 절연 파괴 전장이 증가하였는데 이는 유효 주께 감소와 박막의 양질화에 기인하였다. 또한, 산화 시강의 증가에 따라 Oxynitride박막의 TDDB특성과 초기 불량율도 향상되었다. 결론적으로 Oxynitride박막은 dynamic기억소자의 유전체 박막으로 사용하기에 적합하였다.

Keywords

References

  1. IEEE IEDM Tech. Dig. R. Moazzami;J. Lee;I. C. Chen;C. Hu
  2. IEEE J. Solid State Circuits v.SC-17 T. Ito;T. Nakamura;H. Ishikawa
  3. J. Electrochem. Soc. v.135 R. Koba;R. E. Tressler
  4. IEEE Trans. Electron Devices v.ED-32 M. M. Moslehi;K. C. Saraswat
  5. IEEE IEDM Tech. Dig. S. K. Lai;J. Lee;V. K. Dham
  6. IEEE Trans. Electron Devices v.ED-32 T. Hori;H. Iwasaki;K.T suji
  7. Appl. Phys. Lett. v.44 S. T. Chang;N. M. Johnsonp;S. A. Lyon
  8. IEEE IEDM Tech. Dig. R. Jayaraman;W. Yang;C. G. Sodini
  9. IEEE Trans. Electron Devices v.ED-36 T. Hori;H. Iwasaki;K. Tsuji
  10. Quick Reference Manual for Silicon Integrated Circuit Technology W. E. Beadle;J. C. Tsai; R. D. Plummer
  11. IEEE IRPS Tech. Dig. Y. Ohji;T. Kusaka;I. Yoshida;A. Hiraiwa;K. Yagi;K. Mukai
  12. J. Am. Ceram. Soc. v.74 no.7 E. G. Lee;H. B. Im;J. S. Roh
  13. IEEE Symposium on VLSI Tech. Dig. K. Kobayashi;H. Miyatake;J. Mitsuhashi;M. Hirayma;T. Higaki;H. Abe
  14. J. Appl. Phys. v.48 no.1 C. M. Svenson
  15. Thin Solid Films v.205 no.2 E. G. Lee;J. S. Roh;H. B. Im