A study on the thermochromism of $V_{1-x}M_xO_2$thin film

$V_{1-x}M_xO_2$박막의 thermochromism에 대한 연구

  • 이시우 (수원대학교 전자재료 공학과) ;
  • 이문희 (수원대학교 전자재료 공학과)
  • Published : 1994.09.01

Abstract

Thermochromic $Vo_{2}$ thin films for "smart windows" were prepared by electron beam evaporationmethod on a glass substrate and spectral transmittances were examined by spectrophotometer. Substratetemperature of $300^{\circ}C$ and annealing temperature of $400^{\circ}C$ were found to be effective to give athermochromism on $Vo_{2}$ thin film due to the crystallization of the thin film. Furthermore, annealing of$Vo_{2}$ thin film affected the spectral transmittance and reduced the transmittance significantly at wavelengthbelow 500nm.$V_{0.95}W_{0.05}O_{2}$ thin film doped by 5 atomic percent of W showed semiconductor-metal transition around 0$0^{\circ}V_{0.995}W_{0.005}O_{2}$thin film which contains 0.5 atomic percent Sn showed therrnochrornisrn when it was depositedat substrate temperature of $300^{\circ}C$ and annealed at $450^{\circ}C$ for 5 hours in argon gas. The transitiontemperature of the $V_{0.995}W_{0.005}O_{2}$ thin film was found to be about $25^{\circ}C$ and showed some hysterisis. and showed some hysterisis.

"Smart window"에 코팅재료로 쓰이는 thermochromic $Vo_{2}$박막을 전자빔 증착 방법으로 유리 기판위에 증착시켜 $0^{\circ}C$-$90^{\circ}C$ 온도범위에서 가시광 및 근적외선의 투과율을 spectrophotometer로 측정하였다. $300^{\circ}C$의 기판온도와 $400^{\circ}C$ 어닐링 온도가 $VO_{2}$ 박막이 결정화되기 때문인 것으로 확인되었다. 또한, $VO_{2}$박막을 알곤중에서 어닐링하면 500nm이하의 파장에서는 그 투과율이 상당히 낮아지는 것으로 나타났다. W가 5a/0첨가된 $V_{0.95}W_{0.05}O_{2}$박막은 약 $0^{\circ}C$의 천이돈도를 나타내었고 Sn이 0.5a/o $V_{0.995}W_{0.005}O_{2}$박막의 경우에는 $300^{\circ}C$의 기판온도에서 증착한 후 $450^{\circ}C$/5시간 동안 알곤가스 중에서 어닐링하였을때 뚜렷한 thermochromism을 나타내었으며 이 박막의 천이온도는 실용가능한 온도인 약 $25^{\circ}C$로 발견되었으며 약간의 이력곡선이 나타났다.력곡선이 나타났다.

Keywords

References

  1. Appl. Optics v.30 E. E. Chain
  2. Reviews of Modern physics v.40 no.4
  3. Sol. Energy Mat. v.14 G. V. Jorgenson;J. C. Lee
  4. Appl. Phys. Lett. v.55 K. A. Khan;C. G. Granqvist
  5. Promana-J. Appl. Phys. v.38 K.A. Khan;M.S. Khan
  6. J. Appl. Phys. v.60 T. S. Eriksson;C. G. Granqvist
  7. J. Appl. Phys. v.64 no.6 K. A. Khan;G. A. Niklassan;C. G. Granqvist
  8. J. Vac. Sci. Technol. v.A2 no.4 F. C. Case
  9. Phys. Rev. B v.11 no.1 A. Zylbersztejn;N. F. Mott
  10. Thin Solid Films v.12 J. Duchene;M. Terraillon;M. Pailly
  11. J. Vac. Sci. Technol v.A7 E. Kusano;J. A. Theil
  12. J. Vac. Sci. and Technol. v.A8 no.3 A. Razavi;L. Bodyak;P. Fallon
  13. J. Vac. Sci. Technol. v.A no.4 E. E. Chain
  14. Mat. Res. Bull. v.22 T. E. Phillips;R. A. Murphy;T. O. Poehler
  15. Thin Solid Film v.24 I. Balbeg;B. Abeles;Y. Arie
  16. J. of Appl. Phys. v.45 C. H. Griffiths;H. K. Eastwood
  17. Processsing of 2nd Korea-Mexico joint Symposium Moon-Hee Lee;Si-Woo Lee
  18. Solar Energy Materials v.16 S. M. Blabulanam;T. S. Eriksson;G. A. Niklasson;C. G. Granqvist
  19. Soviet Phys. Solid state v.18 E. I. Terukov;K. D. Ufert;F. T. Tela
  20. Mat. Res. Bull. v.22 T. E. Phillips;R. A. Murphy;T. O. Pehler
  21. Appl. Optics v.22 M. Fukuma;S. Zembutsu;S. Miyazawa
  22. The Materials Science of Thin Films M. Ohring
  23. Handbook of deposition technologies for films and coatings (2nd ed) Noyes Publications