Si기판 세정조건에 따른 산화막의 특성연구

A Study on characteristics of thin oxides depending on Si wafer cleaning conditions

  • 발행 : 1994.12.01

초록

Gate oxide의 특성은 세정공정에서 사용된 last세정용액에 큰 영향을 받는다. Standard RCA, HF-last, SCI-last, and HF-only 공정들은 gate oxidation하기 전 본 실험에서 행해진 세정공정들이다. 세정공정을 마친 Si기판들은 oxidation furnace에서 $900^{\circ}C$로 thermal oxidation공정을 거치게 된다. 100$\AA$의 gate oxide를 성장시킨 후 lifetime detector, VPD, AAS, SIMS, TEM, 그리고 AFM고 같은 분석장비를 이용하여 oxide의 특성을 평가했다. HF-last와 HF-only 공정에 의해 금속 불순물들이 매우 효과적으로 제거됐음을 알 수 있었다. Oxide의 표면 및 계면 형상은AFM과 TEM 측정을 통하여 관찰하였다. 표면거칠기는 SCI 세정용액을 사용한 splits 실험에서 불균일함이 관찰되었고 HF-only세정공정을 거친 시편 및 계면이 가장 smooth했다.

The characteristics of gate oxide significantly depend on the last chemical solution used in cleaning process. The standard RCA, HF-last, SC1-last, and HF-only processes are the pre-gate oxide cleaning processes utilized in this experiment. Cleaning process was followed by thermal oxidation in oxidation furnace at $900^{\circ}C$. A 100$\AA$ gate oxide was grown and characterized with using lifetime detector, VPD AAS, SIMS, TEM, and AFM. The results of HF-last and HF-only were shown to be very effective to remove the metallic impurities. And these two splits also showed long minority carrier lifetimes. The surface and interface morphologies of the oxide were examined with AFM and TEM. The rough surface morphologies were observed with the cleaning splits containing the SC1 solution. The smooth surface and interface was observed with the HF-only cleaning process.

키워드

참고문헌

  1. J. Electrochem. Soc. v.137 no.1887 W. Kern
  2. J. Electrochem. Soc. v.134 no.1031 G. Gould;E.A. Irene
  3. ECS Symp. Proc. v.94 no.7 J.S. Montgomery;J.P. Barnak;A. Bayoumi;J.R. Hauser;R.J. Nemanich
  4. Appl. Phys. Lett. v.55 no.562 M. Morita;T. Ohmi;E. Hasegawa;M. Kawakami;K. Summa
  5. IEEE Trans. Semicond. Maunfact. v.4 no.26 H. Kikyuama;N. Miki;K. Saka;J. Takano;I. Kawanabe;M. Miyashita;T. Ohmi
  6. Solid State Technology v.34 no.12 M. Hirose;T. Yasaka;M. Takakura;S. Miyazaki
  7. Solid State Technology v.32 no.3 V.B. Menon;L.D. Michaels;R.P. Donovan;D.S. Ensor
  8. IEEE Trans. Semoicond. Maunfact. v.2 no.69 H. Mishima;T. Yasui;T. Mizuniwa;M. Abe;T.Ohmi
  9. J. Appl. Phys. v.67 no.6764 G. Zoth;W. Bergholz
  10. Solid State Technology v.33 no.7 T. Hattori
  11. RCA Rev. v.187 W. Kern;D.A. Poutinen
  12. J. Vac. Sci. Technol. v.A10 no.806 C.R. Helms;B.E. Deal
  13. IEEE Trans. Electron Devices v.37 no.107 N. Miki;H. Kikuyama;I. Kawanabe;M. Miyashita;T. Ohmi
  14. J. Electrochem. Soc. v.138 no.1799 M. Wang;M.M. Moslehi;D.W. Reed
  15. Appl. Phys. Lett v.59 no.1995 J. Cho;T.P. Schneider;J. van der Weide;H. Jeon;R.J. Nemanich
  16. J. VAc. Sci. Technol. v.B7 no.621 B. Anthony;L. Breaux;T. Hsu;S. Banerjee;A. Tasch
  17. Mat. Res. Soc. Symp. Proc. v.259 no.69 Y. Ma;T. Yasuda;S. Habermehl;S.S. He;D.J. Stephens;G. Locovsky
  18. Solid State Technology v.37 no.1 R.A. Bowling;S.C. O’Brien;L.M. Loewenstein;M.H. Bennett;B.K. Bohannon
  19. J. Appl. Phys. v.67 no.7168 F. Shimura; T. Okui;T.Kusama
  20. ECS Symp. Proc. v.93 no.13 S. Verhaverbeke;M. Meuris;P. Mertens;H. Schmidt;M.M. Heyns;A. Philipossian;D. Graf;K. Dillenbeck
  21. IEEE Trans. Electron Devices v.39 no.537 T. Ohmi;M. Miyashita;M. Itano;T. Imaoka;I. Kawanabe