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Equivalence of GLS and Difference Estimator in the Linear
Regression Model under Seasonally Autocorrelated
Disturbances

Seuck Heun Song 1), Jong Hyup Lee 2

Abstract

The generalized least squares estimator in the linear regression model is
equivalent to the difference estimator irrespective of the particular form of the
regressor matrix when the disturbances are generated by a seasonally
autoregressive process and autocorrelation is closed to unity

1. Introduction

Consider the standard linear regression model

y = XB + u, (1.1)
where y is the Tx1 vector of observations on the dependent variable and X is a
non-stochastic 7Xk matrix of rank k<7 of Kk regressors Xi, X2, " , Xx. The kX1
vector B contains the unknown regression coefficients and © is a 71 disturbance

vector with E(u)=0. In model (1.1), assume that the disturbances follow a stationary

seasonal autoregressive process (see Thomas and Wallis (1971), Wallis (1972) and King
(1984)),

Usr = Pur-s + &y (1.2)
where the S denotes the ‘'seasons’’ per year, IpI<1 and &, is a sequence of

independent and identically distributed (iid) random variables with FE (e¢)=0 and

2 . 2 . .
Var(e,) =0, assuming O: is constant hereafter. If observations are taken over m years,
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then T=ms. The autocovariance E(u u¢-;)=05 pj/s, if j is an integer multiple of s and

E(ut u-5) =0, otherwise, where 0%=0%(1-p?) . Thus we have

2

Cov(u) = E(uu') =03V, =0%( V1 ®I,) = l—f;w V18l | (1.3)
1 p p2 m-1
p 1 p m-2
where Vi - 02 p 1 pm3 ,
pm-l pm-2 pm—3 1

Is is the sxs identity matrix and ® denotes the Kronecker product. According to a

property of the Kronecker product the inverse matrix V;l is given by

vl = vilel,, (14)
1 -p 0O - 0 0
-p 1+pz -p vee O 0
where Vi'= 12 0 -p 14" = 00
1-p : : O :
0 0 0 - 1+p% -p
0 0 O - -p 1

Since the covariance matrix of © is nonspherical (ie, not a scalar multiple of the
identity matrix), ordinary least squares (OLS) is not efficient, although unbiased, compared
to generalized least squares by Atiken’'s theorem (see Fomby et al. (1984, p. 19)). In

model (1.1) with known parameter P, the best linear unbiased estimator (BLUE) of B is

the generalized least squares estimator (GLSE)

B = (xXxVvy'xX) ' xvily. (15)

2. GLS and Difference Estimator
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The GLS estimator § of B can be obtained by applying OLS to the transformed
observation matrix [Py, PX]. That is,

Py = PXB + Pu, 21)
where P = P®I;, 22)
(1-pHY* 0 0 0 0
-p 1 0 0 0
e A
0 0O 0 - 1 0
0 0 0 -p 1

The TX7T matrix P is chosen that PVsP'=c It with some scalar c¢. The

transformation (2.1) is known as the Prais—Winsten transformation (see Judge et al. (1988
p. 390)) The error terms of the transformed model are iid. and OLS applied to 2.1

produces GLS estimator of B,

B = [(PX)(PX)IN(PX)'(Py) (2.3)
and the covariance matrix for B is given by

7= coo® = X VIX) X VIWVIVLILVIX(XVIX)T!

"

(X' VX))t = oi(1-pP(Xx'P'PX)!
o? [(PX)'(PX)]. (24)

Similarly the s-th difference estimator, DE(s), of B is obtained by applying OLS to

the difference transformed model,

Dy = DXB + Du, (2.5)
where D = D;®I;, (2.6)
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11 0 = 0 0
0 -1 1 = 0 0
L e
0 0 0 = 1 0
0 0 0 = -1 1

D1 is the (m-1) Xm difference matrix. Therefore, the s-th difference estimator is
B* = [(DX)'(DX)]"Y(DX) (Dy) 27)
and the covariance matrix for B* is given by
V™= Cou(B*) =03l (DX) (DX (DX)' DV D' (DX (DX)' (DX)] ™, 28)

In model (1.1)-(1.2), we are interrested in comparing GLSE with DE(s) of B, when the
disturbances follow a stationary seasonal autoregressive process and autocorrelation p is

closed to unity.

3. Main Results

Let u in (1.1) be generated by (1.2). Then the GLS-transformation matrix P is
obtained from (2.2). This implies

limP=li_r:r;(P1 ®I5)=[0 : D} and Lig}(PX)’(PXP[DX]'[DX],

p—1 p

where 0 is an (sX7) matrix. Then we have the following theorem.

Theorem 3.1: (Homogeneous regression)

Both V' and V tend to the same nonsingular and finite matrix & as p — 1.

Proof: From the Lemma in Appendix and constant 02, (DX) (DX) is nonsingular.
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Then
lim e mo?[ (PX) (PX)] ‘=02 (DX)'(DX)]'=Q,

which is some nonsingular and finite matrix. In (2.8),

LU'I}DVSD, = LHT}(DI ®Is)(V1®Is)(D1 ®Is)’ = Li_l_"fll(DIVIDll ®Is)

where })i_I’TllDIVIDl’
2 p-1 p(p-1) = p3(p-1)
o? p-1 2 p=1 = p (p-1)
=Tep | PP-D p-1 2 ~ pT(p-1)
pT3(p-1 pT4p-1) pT3(p-1) - 2
Thus limDV.D" =0t In®I;=0% Ir. Accordingly, lmV"=0Q. O

When the first column of X consists of ones (inhomogeneous regression), the first

column of DX becomes zero and is dropped before applying OLS to (2.5). Now, the

standard linear regression model (1.1) may be written as:

y = [iin][éll] +

where 1 is a T'x1 vector of ones and o denotes the intercept.

Then we have the following theorem in the case of an inhomogeneous regression.

Theorem 3.2: (Inhomogeneous regression)

Both V* and the lower right (k-1)Xx({k-1) submatrix of V tend to the same

nonsingular and finite (k-1)x(k-1) matrix @1 as p = 1.

Proof: Vi=Couv(B}) is given by (2.8) after substituting X1 for X :
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Vi=Cov(B1)=[(DX1)' (DX DX1)' DVD' (DXL (DX1) (DXD] ™!,
whereas Vi=Couv(B}) is the lower right (k-1) x(k-1) submatrix of

- { (PU(PL) (PO(PXD]
(PX1)'(PL) (PX1)(PX1)

By the well-known inversion formular of partitioned matrices (see Graybill, (1983 p.184))
we get

V1= 0¥ (PX1)(PX1)' ~(PX1) (PL) [(PLY (P (P (PXD), (3.1)

Further,
(PP =[(P1®I)LI'[(P1®I)i]=s(1-p%)+(T-s)(1-p)?,

which has a single zero at p=1, and
(PUO(PL) =[(P1U)(P11) ®I],

(1-p)(1+p) Y1-p*(1-p) ~ VI-pX1-p)

Y1-p*(1-p) (1-p? ~  (1-p)?
where (Pii)(Pil)= : : :

YVi-pX(1-p) (1-p)? . (1-p)?

Yi-p%(1-p) (1-p)? -~  (1-p)?

Therefore, Li_r,rll(P'L)[(P'L)’(P OUIYPL)Y has zeros everywhere except in the upper left
cormmer. From }Jl_r}}PX =[0 : DXV, the second term in (3.1) tends to zero as p—1. This

implies L1_r’r11 Vi=oi[ (DX (DX))] = Li_gllVi and proves the theorem. []

4. Remarks
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The theorems 3.1 and 3.2 show that the GLSE is equivalent to the DE(s) irrespective of
the particular form of the regressor matrix, if p is closed to unity. In particular, when

p=1 (u: follows a random walk process), the GLSE is equal to the DE(s). Specially if

s=1, the GLSE is equivalent to the first difference estimator.

Appendix

Lemma: If U7 € C(X), where 17 is a Tx1 vector of ones and C(X) is a column

space of X, then @=X'D'DX is nonsingular.

Proof: Suppose @ is singular. Then there exists a nonzero vector U such that Quv=0
which implies D'DXv=0. Since the null space of D'D is generated by the vector U7,
we see that Xv=ho L7 for some scalar ho. Furthermore, as v#0 and X is column

nonsingular we have Ao#0. This entails iy € C(X) which by assumption is excluded.
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