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ABSTRACT

Let P and @) be probability measures on a measurable space (2, F),
and {F,}.>1 be a sequence of increasing sub o-fields which generates
F. Foreach n > 1, let P, and ),, be the restrictions of P and @) to F,,
respectively. Under the assumption that ¢, < P, for every n > 1, a
zero-one condition is derived for P and ) to have the dichotomy, i.e., ei-
ther @ < P or ( L P. Then using this condition and the Kolmogorov’s
zero-one law, we give new and simple proofs of the dichotomy theorems
for a pair of Gaussian measures and of Poisson processes with examples.
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1. INTRODUCTION

Suppose that two probability measures P and ) are given on a mea-
surable space (§,F) with an increasing sequence of o-fields {F,},>1 where
F = o(UL,F,), the o-field generated by U2 F,. @Q is called absolutely
continuous with respect to P (denoted by Q@ < P) if @(A) = 0 whenever
P(A)=0for Ae F. f Q < P and P < @, these measures are called equiv-
alent (@) ~ P). We say that @) and P are (mutually) singular or orthogonal
(@ L P)if there exists a set B € F such that Q(B) = 0 and P(B°) = 0. Let
Q) and P, be the restrictions of @ and P to F, for n > 1, respectively.

Throughout this paper, it is assumed that @, < P, for each n > 1. Under
this assumption, there are some cases that () and P are either absolutely con-
tinuous or singular: the dichotomy. The main purpose of this paper is to find
the conditions which guarantee the dichotomy and to prove some dichotomy
theorems using those conditions and the well-known Kolmogorov’s zero-one
law.

It is easy to see that () < P imply @), < P, for all n > 1. However the
converse is not true. @), < P, for all n does not always imply ) < P. Note
that ), L P, for some n > | imply @ L P. It is of course possible that @
and P are neither absolutely continuous nor singular. For example, let () and
P be singular on (9, F) with @, < P, for all n > 1, and let R = (P + Q)/2.
Then R, < P, for all n, but neither R < P nor R L P.

Kakutani (1948) obtained the dichotomy theorem for infinite product prob-
ability measures using the Hellinger distance. Kakutani’s theorem was ex-
tended to the case of non-product measures by many authors.

Hajek (1958) and Feldman (1958) independently proved the dichotomy
property for Gaussian measures using the information theory and the repro-
ducing kernel Hibert space theory, respectively. Gihman and Skorohod (1966),
and Brown (1971) obtained the dichotomy for Poisson processes. Park (1993)
obtained the dichotomy for a pair of stationary and ergodic measures, one

of which need not be ergodic, using the ergodic decomposition theorem. Park



Dichotomies of Gaussian and Poisson Processes

(1993) generalized the existing dichotomy theorem (see Breiman (1968), Corol-
lary 6.24, for example) for two different stationary and ergodic measures by
eliminating the ergodicity assumption from one of the two measures.

For arbitrary probability measures, Kabanov, Liptser and Shiryayev (1977,
abbreviatedly KLS) established some necessary and sufficient conditions for
absolute continuity and singularity using martingale theory. Lepage and Man-
drekar (1972) obtained a zero-one law type condition for the dichotomy. A
survey of some important results on this topic, along with relations to conti-
guity and separability, is presented in Prakasa Rao (1987).

In this paper, firstly, we slightly extended Lepage-Mandrekar’s zero-one
condition for the dichotomy using a result of KLS. Then, using this condition
and the Kolmogorov’s zero-one law, we give new and simple proofs of the
dichotomy theorems for a pair of Gaussian measures (Hajek-Feldman theorem),
and of Poisson processes (Gihman-Skorohod-Brown theorem). Examples are

given for Poisson processes in the last section.

2. PRELIMINARIES

Let Z, be the Radon-Nikodym derivative d@,/dP, (the likelihood ratio
in Statistics) under the assumption @), < P, for each n > 1. Then clearly
{Z,,F,, P} forms a nonnegative martingale with E(Z,) = 1. (In this pa-
per, the expectation is taken with respect to P unless a specific notation is
used). Hence, from the martingale convergence theorem, there exists a random
variable Z > 0 such that E|Z| < oo and lim,,—.co Z, = Z a.e. [P].

Therefore we have P(0 < Z < oo) =1land 0 < E(Z) < lim inf E(Z,) =1

n—0C

by Fatou’s lemma. It is notable (see Lemma 5 of KLS) that

im Z, =2  ae. [Q] (2.1)

=00

By the Lebesgue decomposition theorem, there exist unique sub-probability
measures ()° and @)° such that Q) = Q° + Q°® with Q° < P and ()* L P. By
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the uniqueness of Lebesgue decomposition, it is easy to show that
Q=0 iff Qg P,
Q=0 iff QLP (2.2)

Since it is known that (see Gihman and Skorohod (1974), p.442, Theorem

1)
Z =dQ°/dP a.e. [P], (2.3)

we have, for A € F,
Q(A) = /A Z dP + Q*(A). (2.4)

Hence, using (2.4) and the properties of uniform integrability, we have
the well known fact that Q <« P, E(Z) = 1, and uniform integrability of
{Z.,F., P} are equivalent. Moreover, from (2.2)-(2.4) and the nonnegativity
of Z a.e. [P], it follows that

Z=0 ael[P] iff QLP (2.5)

The following lemma, proved in Lemma 6 of KLS, plays a key role in the

present paper (for the proof of Theorem 1).
Lemma 1. Under the assumption that @, < P,, for every n > 1,
Q<K P iff Q(Z < o0) =1,

QLP iff Q(Z<oo)=0.

3. ZERO-ONE CONDITION FOR THE DICHOTOMY

The following Theorem, which is a slight extension of the result of Lepage
and Mandrekar (1972), plays a key role to determine whether given measures
enjoy the dichotomy or not. Kakutani’s dichotomy theorem is easily proved

using the following Theorem 1.
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Let 3, = Z,Z;},. Since Q0 < Z, < 00) =1, Q0 < B, < o) =1
for every n > 2 so that {#,}.>2 is Q-a.e. well defined. However, on the set
{Z,,—1 = 0}, we take 3, = 0. Let F* =N, 0(8.| n > k).

Theorem 1. Assume that @), < P, for every n > 1. If the tail o-field
F* has zero-one property with respect to (7, then the dichotomy arises : either

Q< Por@ L P.

Proof. Since lim Z, = Z a.e. [Q] by (2.1), {Z < 00} = {lim Z, < oo}

=00

a.e. [@]. Now we have a.e. [Q],

{Wlim Zy <00} = {"lim log Z,, < oo}

1-—0C

m

= {lim > (log Z, —log Z,_1) < oo}

n=k+1
€ ollog (Z.274) In>k} = o Bu|n >k}

for every £ > 1. Note that the second equality holds ()-a.e. because Q(Z, >
0) =1 or Q(log Z, > —o0) = 1. Since Q(Z < oo) = 0 or 1 by assumption,

the proof is completed from Lemma 1.

Remark 1. Lepage and Mandrekar (1972) obtained a theorem similar to
Theorem 1 by considering the set {Z > 0} € F*. Their assumption, however,
1s the equivalence of (), and P, which is stronger than our absolute continuity
assumption ), < P,: assuming ), ~ F,, if F* has zero-one property with
respect to P, then either ) L P or P < Q).

When @), ~ P, are assumed for every n > 1, by interchanging the roles of

P and @, we simply obtain the following.

Corollary 1. Assuming Q,, ~ P, for every n > 1, if F* has zero-one
property with respect to () and P, then either Q L P or Q) ~ P.

For the application of Theorem 1, some appropriate zero-one laws for F* are
crucial. In this paper, the Kolmogorov zero-one law is mainly used by inducing

a sequence of (J—independent random variables {3, }n>1 or {log B, }n>1.
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Let P = [[2, PO and Q = 132, Q) are infinite product measures on
(Roo, F) = [12,(RD, FO), where PY and Q) are probability measures on
(RY, F®). For every n, let

Fo=T]F9 x ]I {0,RY}. (3.1)
i=1 i=n+1 :

Then, under the assumption that @, < P, for every n > 1, Kakutani’s
dichotomy theorem is obtained by Theorem 1 and the Kolmogorov’s zero-one
law. This is because that 8, = dQ™ /dP™ = ¢ /p(") for n > 1, where ¢
and p(™ are the n-th marginal probability density functions, form a sequence

of independent random variables with respect to ) (and P).

4. THE DICHOTOMY FOR GAUSSIAN MEASURES

The Hajek-Feldman’s dichotomy theorem for Gaussian measures also can
be proved by Theorem 1 and the well-known Kolmogorov’s zero-one law while
Lepage and Mandrekar (1972) applied the operator theory and the Kallianpur's
zero-one law for Gaussian measures in their proof. Thus our proof is much
easier to understand than the proofs of Feldman and of Lepage-Mandrekar.

We mainly use, in the proof, the fact that the Radon-Nikodym derivative
for any pair of normal distributions can be described by pair of sequences of
independent normal distributions.

For each n > 1, finite dimensional Gaussian measures P, and Q,, are either
singular or equivalent (because any nondegerate Gaussian measures P, and
() are equivalent). We don’t need the usual assumption Q, < P, for every

n 2> 1 in the following theorem.

Theorem 2. Two Gaussian measures P and @) on (Ro,, 0(Ro,)) are either

singular or equivalent.

Proof. Let X = (X;,...,X,) be N(a,,%,) under @ and be N(bn, Ay)

under P, where %, and A, are nonsingular positive definite matrices. Then
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clearly either P, ~ @, or P, L @, for every n > 1. If P, L @), for some n,
then P L (). Thus we assume P, ~ @), for all n > 1. Then

dQn ‘An}l/‘z I —
00 = 5 x5 X - e DX e
' " (4.1)
1

5 (X = b ATN X ~ ba) }-

Now, as done by Hajek (1958), take a nonsingular matrix V such that
¥, = VV' and an orthogonal matrix U such that U'V'A'VU is a diagonal
matrix (say the diagonal entries ¢? for every ¢ > 1). And take transformations
for vectors Y = (Y1,...,Y,) and g = (p1,...,¢tn) by X —a, = VUY and
b, — a,, = VUpyu. Then clearly a random vector Y is normally distributed with
mean (0 and variance I under (), and is independent normally distributed with

mean g and variance (o7,...,02

(X — a,)S X —a,) = YU'VE'VUY

3

"under P. Also we have
. (4.2)
— Y/Y — Z }/;2,
(X — bn)'Agl(X —b,) =(Y - ,u)'U'V'A;lVU(Y — )
(4.3)

Thus, after taking account of Jacobian of the transformation, it follows from
(4.1) that

Q. . dq,
IA |1/2 1. 2 (4'4)

= 5.7 exf’{“zw 52 B

Therefore

1 Yn_ n2
ly2+_( ,/’)

log fu = log Zn —log Zn1 = e = 3Vl 55
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where ¢, is a finite constant. Since {Y'z}n>1 is an independent sequence under
Q, {Y?— (Y, — un)?/o? }n>1 1s also an independent sequence under Q (even
though Y? and (Y, — ,.)%/02 need not be independent for a fixed n).

Therefore, by the Kolmogorov’s zero-one law and Theorem 1, we have the
dichotomy : either Q L P or Q < P. By interchanging the roles of P and @,
it follows that P L () or P < (), which completes the proof.

5. THE DICHOTOMY FOR POISSON PROCESSES

In this section, the dichotomy theorem (Gihman-Skorohod-Brown) for two
probability measures induced by a Poisson process is proved by using Theorem
1 and the Kolmogorov’s zero-one law. In the proof, the approach due to Brown
(1971) and the property that a Poisson process has stationary and independent
increments are mainly used. The following construction of Poisson measures
is based on Brown (1971).

Consider a random nonnegative integer valued set function N on a mea-

surable space (A, A) having the property that for any k& > 1,
(1) N(Cy),N(Cy),...,N(Cy) are independent when Cy,Cs,...,C, € A are

disjoint, and

(2) for each C' € A and n > 0,

PIN(C) = n} = o HO) (5.1)

n!

where y is a o-finite measure over a measurable space (A, A).

A collection {N(C1), N(C3),... } of random variables having the above
properties is called a Poisson process with a mean measure . For the no-
tational convenience, let the sequence (Cy,Cy,...) stands for any sequence of
disjoint sets in A such that A = U2, Cy and p(C) < oo for each k > 1.

Each realization of a Poi@@on process is, according to Brown (1971), of the

form N(C,w) Z N(ti(w),w) where {t!, i = 1,2,...} is a random countable
tce
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collection of chunks of A (a chunkof Aisaset C € Asuchthat C' C C, C'e A
implies C' = C or C' = ), and N(ti(w),w) is a positive finite integer. Thus
the probability measure (say Poisson measure and denote P,) induced by a

Poisson process with a mean measure p over (A, A),
P, = P{(wr,wa,...) + N(Crw1) =m, N(Cowp) =na,... },  (5.2)

is defined over (2, F), where () is the set of all countable subsets of chunks of A
(multiple occurrences of chunks are permitted), and F = o(N(C1), N(C2),... ).
For more general discussion on Poisson measures, see Daley and Vere-Jones
(1988). Let F,, = o(N(C1), N(Cy),...,N(C,)) and P,, be the restriction of
P, to F,, for each n > 1. Then P, is a Poisson measure over ({2, F,,) with a
mean measure g over a measurable space (A,, A,), where A, = U}_;Cy and
A, = AN A,. Also Poisson measures P, and P, , with a o-finite mean measure
v are defined similarly.

Now, for the Radon-Nikodym derivative of Poisson measures, the following

lemma is useful (see Brown for the proof).

Lemma 3. If P, and P, are Poisson measures with finite mean measures
¢ and v over (A, A), respectively, and g < v with f = du/dv, then P, < P,

with
N(A)

dP,/dP, = exp|—{u(A) = v(A)}] T] F(t:). (5.3)

=1

Theorem 3. Let P, and P, be Poisson measures with o-finite mean
measures g and v over (A, A), and g < v, then the dichotomy arises: either
P, L P o P, KPP,

Proof. Since p(A,) = > iz #(Ck) < oo and v(A,) < oo on A, for all
finite n > 1, we have, by Lemma 3, P, ,, < P,, with

Zn = dP,u,n/dPu,n = HYk7 (54)

k=1

where Yy = exp [—{u(Ck) — v(Ci)}] Hf\_]__(lc") f(t;) for t; € Cy.



376 JeongSoo Park

Note that 3, = Z,LZ;_I1 =Y, for n = 2,3,... form a sequence of inde-
pendent (with respect to P, and P,) random variables by the property (1) of
Poisson processes. Thus, again by the Kolmogorov’s zero-one law and Theorem

1, the dichotomy holds, which completes the proof.

6. EXAMPLES

In this section, firstly, a precise condition for absolute continuity and sin-
gularity is considered after assuming that the dichotomy holds. Then two
examples for Poisson processes which enjoy the dichotomy are given. More
precise conditions for absolute continuity and singularity, and examples of di-

chotomous Gaussian measues, including the following theorem, are given in

Park and Jeon (1983).

Theorem 4. Assume that the dichotomy holds. Then

lim E(Z;) > 0 for some o € (0,1) iff Q < P,

n—o00

and

lim E(Z;) =0 for some a € (0,1) iff Q L P.

n—oo

Proof. Since > > 1 and E{(Z2)Y*} = E(Z,) = 1, {Z2, F, P} is uni-
formly integrable. Thus lim E(Z7) = 0 implies Z = 0 a.e. [P]. Therefore
@ L P by (2.5), and the proof is completed by the dichotomy assumption.

Example 1. Let {N;,,N;,,... } be an ordinary Poisson process with the
intensities a under (), and g under P, where 0 =ty < #; <ty < ... <tp < ...
. Then

7" = exp{~"2(a = )} (a/) S5m0 (6.)

Since Z;‘f:l N; is a Poisson random variable with intensity #;3 under P, we

have

lim E(Z}%) = lim exp{-%’“(a + 8 -2/ap)}. (6.2)



Dichotomies of Gaussian and Poisson Processes

Since a + 3 — 2/aB > 0 with equality iff o = 3, it follows that @ = P iff
a= 03, and Q L Piff a # 8 by Theorem 4.

Example 2. Let P and Q be the probability measures induced by Poisson
processes with o-finite mean measures g and v, respectively. Under the same

notations as in Section 5
1 k n; /2 .
UZ-exp{——Z,u +§Zz/ ~ } XH{ )/ v(C }J . (6.3)
1=1

Since it is assumed that @, < P, for every n > 1, we only consider the
sets (s such that v(C;) > 0 in (6.3), without loss of generality. Since N; is
an independent Poisson random variable with mean v(C;) under P for each

j > 1, a simple calculation shows that

Jim BZL) = fim exp{—3 L (u(C3) +(C3) + LVMEME) . (64)

If 4 and v are finite, then (6.4) is positive which leads ) < P by Theorem 4.

By noting that u(C;) + v(C;) > 24/p(C;)v(C;) with equality iff p(C;) =
v(C;) for every j > 1, we have Q = P when p = v, whatever those are finite or
not. If 4 or v is infinite (but u # v), then (6.4) is zero which leads to @ L P.
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