S
I

Digital Filter Design using the Symbol Pulse
Invariant Transformation

Tae Soo Kim*, Rokuya Ishii*,

FeEH & F K

Hyung Lae Kim* Regular Members

FE#H Rokuya Ishii* F&H 2 & =

ABSTRACT

In general, when IIR digital filters are designed from analog filters, the bilinear transformation
and the impulse invariant transformation are commonly used. It is known, however, that high fre-
quency response of digital filters designed by these transformations can not be well approximated

to the sampled analog signals.

In this paper, the symbol pulse invariant transformation is analyzed theoretically so that the
symbol pulse invariant transformation which was originally applicated to a rectangular pulse is
newly applied to double rate pulse signals and generic shape pulse signals. Also, the relation of
spectra between a transfer function of digital filter and one of analog filter is considered.

Further, we apply to design the digital high pass filters using the symbol pulse invariant trans-

formation method.
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1. Introduction

Digital signal processing has become an import-
ant tool in the multitude of diverse fields of elec-
tronic engineering.

In this paper, the problem of the transform for
digital filter design from a given analog transfer
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function is considered. In that case, a digital fil-
ter is put in correspondence with an original
analog filter. This procedure will be achieved by
the transformation methods, The impulse in-
variant transformation and the bilinear transform-
ation are most widely used?.

In this paper, we first review the traditional
transformations and point up their advantages
and disadvantages. Next, we prove that instead
of this rectangular simple pulse signal, we can



GEEH (R Ll 91— 1 Vol.19 No.l

adopt the same transformation to a double rate
pulse signal with a sum of unit step functions.
Furthermore, we show that we can apply the
same transformation to any generic waveform
signal and in particular this transformation can be
applied to a signal approximated with straight
lines.

Finally, we show that the symbol pulse -
variant transformation can be used to active the

desired high pass digital filter.
II. Traditional transformations

The impulse invariant transformation and the
bilinear transformation have their own advant
ages and limitations.

The properties of the impulse invariant trans
formation is pointed up in the following. This me-
thod shows that a digital filter with an impulse re
sponse identical to the sampled impulse response

of a given continuous filter can be derived via
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where T is the sampling interval.

Attractive feature includes the fact that the fre
quency scale i1s not warped. Therefore waveforms
tend to be preserved.

Unattractive features include the following : Map
ping is not algebraic. Owing to overlapped map
ping, the frequency response 1s aliased. If T is
small, the gain becomes large.

Next, the properties of the bilinear transform
ation are pointed up in the following. This me
thod 15 defined by

201—zH

- E (
T+z 0 b

This method provides a simple mapping between
analog and digital filters which is algebraic in
nature. It also has the advantage that stable
analog filters are mapped to stable digital filters,

Further, analog filters can be mapped to digital

filters with-out aliasing.

The disadvantage of this method is that the
frequency scale in the frequency domain is
warped. Also, neither the impulse response nor
the phase response of the analog filters are well
preserved.

Next, the properties of the symbol pulse in-
variant transformation include the following.

In order to obtain better waveform preser-
vation and more less aliasing property, we con-
sidered the symbol pulse invariant transform-
ation. This technique is a transformation using
the relationship between the output y{z) of the
digital filter which 1s earned from the sampled
output y(n/) of the analog filter and input signal
x{n). In this method, the advantages include that
:The rectangular pulse signal used in this me-
thod is practically used in communication system.,
Therefore this method is realistic. And also, the
stable analog filters are mapped to stable digital
filters. turther, the signal waveform is well pre
served. One disadvantage of this technique ig
that the pole position can be aliased unless T is
selected small enough, because the rectangular
pulse signal is not a bandhimited signal.

In general, the design of the digital filters by
using the transformations i1s accomplished, when
the transfer function for the analog filter 1s
known.

{f we represent the analog filter by a partial

fraction expansion with only first order poles,
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S— 8

1.
H.(s) l{'(\‘l\/\ + Z (2)
B
where (7 1s the residue of the [th pole s/, K is a
constant multiplying coefficient and
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where M is a degree of denominator and N is one
of numerator, Using the symbol pulse invariant
transformation, the transfer function of a digital
filter is obtained as like Fq. (3)
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From above results, the transformation from H,
(s) to H(z) is expressed as follows,
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To be completely general, Eq. (4) should also
include some poles of multiple order. If s; are the
simple poles of H,(s), and s; are some poles of
multiple order, H,(s) is expressed with the fol-
lowings :

Hal) = Koy + 3 —— 43 (
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When M is equal to N, H,(s) represents a high
pass filter ; otherwise, a low pass filter. Similarly,
we can derive the transfer function of a digital
filter in this case.
This is expressed with!3’
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Therefore, when H,(s) has a pole of multiple or-
der, the transformation can be expressed as follows ;
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When a transfer function has poles of multiple or-
der, the transformation can be derived easily.
Hereafter, we assume that all pole of a transfer
function are of order one.

III. Transformation Relationship

The symbol pulse invariant transformation'?

was derived by using a rectangular pulse signal.
Here, instead of this rectangular simple pulse sig-
nal, we adopt the same transformation to a double
rate pulse signal with a sum of unit step funct-
ions, Furthermore, we apply the same transform-
ation to any generic waveform signal.

3.1. Double Rate Pulse Signal

In this section, we derive the transformation
for approximating an output signal with a sam-
pled signal when an input signal is the double
rate pulse signal.

The double rate pulse signal is shown in Fig, 1.

xa(t)
1
) t
0 Tp/2 Tp
-1
Fig. 1. Double rate pulse signal
1 . 0<t<Ty2
X)) =1 —1 To2<i<T, (7
0 1<0,t =Ty,

where T, is the signal length. The output response
y.{t) of the analog filter for a double rate pulse
signal is derived by a convolution calculation,

"(: h(t —=)dr 0<t<T,/2
(AR T G Ly A Ry
Jo Jipl?
, To2<t< T,
yu(t) =
“'l;,/'.f 'Yp
‘” h{t —+)dr — N h(t —7)dr
, t>T,
0 , 1<0, (8)
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Here, the impulse response A(¢) of the analog
filter is obtained by the inverse Laplace trans-
form from Eq. (1) and can be expressed with

R(t) = Ko(8) +; Crest ult). (9)

Next, we sample x,(¢) with a period T. We as-
sume that T is T,/N and N is a positive integer.
Therefore, a sampled signal x.(n7T) =x(n) can be
written as

1, 0<n< N/2
xm)={ -1, Nf2<n<N (10)
0 , n<0,n=N,

The sequence y,(nT) = y(n) is derived by sam-
pling a continuous signal y,(¢) every T seconds.
Therefore y{#n) is expressed with!!!
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Then, taking the z-transform of Eq. (11) gives

L - —(1 = \/_’)2
V(z)=d(2) + ¥ L —-(1—27,—1- (12)
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Further taking the z-transform of Eq. (10) gives

— ,~N/2)2
X(2) =(~le—2—_—1)~ (13)

From Eq. (12), Eq. (13) and the relation H(z)
=Y(z)/X(z), the transfer function H(z) is obta
ined.

H(z)=K+Y — ——~ (14)
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As we can see that Eq. (14) and Eq. (3) are
the same, we can say that the transformation ex-
pressed with Eq. (4) can be employed :that is,
the output signal in the digital systern expressed
with the transfer function, Eq. (14). is equal to
the sampled signal obtained from the output sig
nal of the system expressed with Eq. (2) when an
input signal is the double rate pulse signal.

3.2. A Generic Waveform

In this section, we derive the transformation
for approximating an output signal with a sam-
pled signal when an input signal is represented
with a sum of step functions and ramp functions.
Firstly, we consider the case of dividing a analog
input signal x,(¢) with length T4 as shown in Fig.
2. When an input signal is approximated with
straight lines, the signal is expressed with

z4(t) W
i}
Vi v
i i
H : H
IE 1 i m EIV é"
T

Fig. 2. Approximated straight lines of a generic wave
form

kig gy . kI,
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x(r) 7| T ](T*T)
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+x(%) (15)

where %Lz s s(—k—+—1!)—é T is the length of the sig-

nal, k:1, 2, -,
output response is calculated by a convolution of

M and M is an integer. Then, the

the input signal x{r) and the system impulse re-
sponse A(t), that is to say

vty =" xr)hit =7)dr. (16)

Here, the signal consists of the sum of step
functions as I, I, IV, regions and ramp functions
as I, V, VI, VI, VI regions in Fig. 2 approxim-
ately ; That 1s, we can approximate the output
signal with a sum of step functions and ramp
functions, When a signal is represented with a
sum of step functions, the same transfer function
as Eq. (3) can be derived similarly. Therefore,
we need to calculate the transfer function for [,
V, VI, VI, W regions. Next, we prove that the
same relationship as Eq. (3) for a ramp function
is derived.

The ramp function in [ region is defined as

, t, 0<t< T,
> =
pit) {O , elsewheye (17)

where 7, is a width of a ramp signal. From Eq.
(9), Eq. (16) and a ramp signal P(t), we can ob-
tain y,(¢) as like Eq. (18)

L ~t
[ Kt+3 ¢ et
40

=

—Kt+Y Lo v Lo
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=3,
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where the sampling period T is T4/M, the output
yo(nT) is derived by sampling v,(¢). Then taking
z-transform, Y (z) is represented with

Y(z)—(lx+}f )v ATz

+i { (S‘/ [A=Mz Tz
(1-zH(1-e™" 271

s (M—1)Tz" "}

T e

@(Z) (z"l_z"';\rl*l)

T oA e

Iy (19)

(s;T)* + (5;T)3

where @(z) = o1 37

+ e,

Assuming |, T| €1, Y(2) is given as

Lo, Mo
Y(z)=(K+Y —=)Y nlz"
I=} S[ =0

Lo 5Tz (1-Mz Mth)
o
+r:.{S§ : (1—z2 H(1l—eT2z7Y)
sTz Y (M—1)z""

+ Q-2 H(1~e ™z 3. (20)

Taking z-transform of a ramp function expres-

sed with Eq. (17), X(z) is given by

z"l(l_ﬂl‘e*(,lI*l)) (M_l)z'(.'tl-i'l)

Y@ =TS B

(21)

From Eq. (20) and Eq. (21), the obtained trans-
fer function H(z) is shown to be equivalent to
Eq. (3). Therefore, the validity of the transform-
ation expressed with Eq. (4) Is proved to be
proper. The output signal of the digital system, is
equal to the sampled signal obtained from the
output signal of the analog system, under the
condition |s;T| €1 when the input analog signal
1s approximated signal with a sum of step funct-
ions and ramp functions.

3.3. The Relationship of Spectra

In this section, the relation between the spec-
trum of an analog signal and the spectrum of a
sampled signal is expressed with
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X(e’m):% T oxtio+ (22)
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where X,(7Q) and Y.(;Q) are spectra of input
signal and an output signal, respectively. \ (e/¢/)
and Y (/) are spectra of a sampled input signal
and a sampled output signal, respectively. From
above equations, the transfer function of a digital
system designed by using a symbol pulse In
variant transformation 1s obtained.

i Ya(].Q +]
H(eM) = —— - (24)
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In this case, the transfer function is expressed
with

IV. Design of high pass digital filters

The impulse invariant transformation and the
bilinear transformation are useful transfer fun
ctions for designing a digital filter from analog
filters. However, in the problem of the design of
high pass filters, the impulse invanant transform
ation can not be used'!! Therefore. we will not
discuss for designing a digital high pass filter
from an analog filter with the impulse invariant
transformation. The case of the bilinear trans
formation, to overcome the problem of the fre
quency scale, the prewarping method are adopted
usually. However, we do not adopt the method in
this paper, simce the impulse response of the time
domain and the phase response of the frequency
domain are not equal between in analog and in

digital representations'’

4.1. Symbol pulse invariant transformation

6

The design of a high pass filter often begins
with a requirement to translate a frequency, such
as s —1/s.

Specifically, when the relation is applied to an
analog Butterworth filter which is a low pass fil-
ter, a high pass filter is expressed with

N2 2¢cosdks +1
Hiuls) = I e (2
s p.‘l s°+ 2cosdes +1 1 ¥)
where, ¢~ (2k — D r/2N, k=1.2 -, N/2.
Application of the partial fraction expansion in

Eq.(28) yields

v P, q;k
Hals) = 111 { :
als) =1 p. s+ e ste I

] (29)
where
W= Z (28 1) Ysina + Jcos a),

Wi~ Zed2Y 1) Hsma - jcosa).

Parameters Zi. /x. . and a are represented re

spectively :

N2
Ze ATl s+ 2cosges 1] =M1, e,
N2 _ i
Ze =01 [ s"+2cosdes 11 =501, . m,
ko
Neoo lU-K)n ¥ Utk-Dno,
! Ul s }‘”. l,sm——z‘\—,-‘“;,

a | (2Nk- N —d4k+2)n]/4N
Applving the symbol pulse invariant transform-
ation to Eq.(29) yields

i 2 1~e ¢
1,02) 1- 11! Wee'®
kot

—p T 5
] T
w2 U0 —et ™)
e M S 1 G0

For convenience, let the real and imaginary part

of the complex be Wy and ¥, respectively.
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Then, the transfer function for the high pass di-
gital filter becomes Hy(z)

o Ni2 Alk37 1 ‘+‘442k272
Hi(2) =1 kI;Il 1‘B1k271*‘32k2v2

where

A= 2[1—e <% cos(singp7)] Vi

+2e7% T sin(singe T) Yok ,

A= —2e %7 [ cos(sing. T) —e ¢! ]y,

—2¢ %7 gin(sin g T) ] Yok,

Blk — Zefu)sml cos ¢k TV BZk = —p 2008 @y ! ,

Yik = (“PRCOS ¢k - T,sin ¢k),
Yor = (W) COS dhe + Wi sin dr).

4.2. Bilinear transformation

A transfer function of a digital filter 1s obtained
from this method by making the algebraic substi-
tution of Eq.(1).

H(z) = H(S) lsoon-2yra+z b

when this transformation is applied to the trans-
fer function of an analog filter Eq.(28), the trans-
fer function of the digital filter 1s readily at-
tained.

N2 AUk + :{11(271 + Agkzi 2

Hulz) =1~ ;
h( ) 1 E\ l—lilkz"‘—lfgkz’z

(32)

where, T is sampling period and

(2k—1 = .
TN [
(2k— 1=
2N
. 2k —
Aune=114+(T/2)" +'I‘COS(‘(—Z-—()—-\-QL )1

Z .

A= 11+ (1/2)> + T cos(

A= —2[ 1+ (T/2)* + T cos( )],

Biv=1[ —242(1/2)% ]

Ik —
'L1+('I‘/2)2+'1‘cos(M)J !
27
op
Ba=[ 1+ (1/2)? — Tcos(~2E=17 )
2N
_(_Zk*-'l)rc
2N

L1+ (T/2)2+ Tcos( )17,

The high pass filter obtained by the bilinear tr-
ansformation 1s designed for comparisons with
one by the symbol pulse invariant transformation.
The specifications of HPF are the followings:a
pass band cutoff frequency w,= 0.5r, stop band
edge frequency w, = ().34n, pass band attenuation
Bp==1.5d B, minimum stop band attenuation 3, ==
15dB and f,==10kHz. Fig.3(a) shows the magni-

dB
10 T v T T T T T T
oF
-10[
-20f
-30r bilinear
-40 I
_50 - -
-60 I symbol E
=70 b
‘80 1 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5
flfs
(a) Gaini dB |
sec
16 T T
12
symbol
8 bilinear
4 4
0 i i 1 1
0 0.1 0.2 0.3 0.4 0.5

flfs
(b) Group delay. s ]

Fig. 3. Designed characteristics of HPF
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tude property and Fig.3(b) shows the group de-
lay. The group delay is defined by

dH(z)/dz :

r(e/*) = —Rel z ).
H(z)

The two transformations have very similar mag-
nitude property in pass band. For the filter de-
signed by the symbol pulse invariant transform-
ation, the group delay shows 3.5 secs in the pass
band, and also for the filter obtained by bilinear
transformation, the group delay shows from 3
secs to 4 secs, which 15 not a constant delay
characteristic.

Further, we consider LPF, BPF, and BSF. The
specifications of BSFE are the followings :the sam
pling period is 0.45(s], the stop band edges are n/
2 and n/5, and the order 1s 2. The specifications

of LPF and BPF are made by the values given in

1
0 0.050.10.150.2 0.25 0.3 0.35 0.4 0.45 0.5
£/£s(1/2m)

Fig. 4. Gain characteristic of LPF

dB

"\
N
-80 - /\ 4
-100 [ symbol 1'“\\ /«:
-120 F N .
~140 | bilinear :
-160 [ N
-180 [ PR 1
_200 i 1 1 i i 1

0 0.5 1 1.8 2 2.5 3
f/fs

Fig. 5. Gain characteristic ot BPF

7] and [8], respectively, Also, the gain chara-
cteristics of LPF, BPF, and BSF are given as
Fig. 4, Fig. 5, and Fig.” 6, respectively. From
above results, we can classify the optimal trans-
formation, according to purpose of designing as fol-
lows : for only gain properties the bilinear trans-
formation 1s optimal ; for group delay properties

the symbol pulse invariant transformation is opti-

mal.
dB T T T T
bilinear = A
symbol "7 |
1 1 1 'S
1.5 2 2.5 3
f/fs

Fig. 6. Gain characteristic of BSF

V. Conclusions

In this paper, the symbol pulse invariant trans-
formation 1s analyzed so that the symbol pulse in-
variant transformation which was apphed to a re-
ctangular pulse is newly applied to double rate
pulse signals and generic shape pulse signals. It 1s
also expanded to the general case of the analog
filter,

Further we express the relationship of spectra
on the transfer functions between digital filter
and analog filter for the symbol pulse invariant
transformation. [Finally. we prove that the symbol
pulse invariant transformation can be used to de-
sign a high pass digital filter, Also we show the
characteristic of frequency response for HPEF in-
cluding LLPF, BPF, and BSF. As a result, we can
classify the optimal transformation, according to

purpose of designing as follows : for only gain pro-
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perties the bilinear transformation is optimal ; for
group delay properties the symbol pulse invariant
transformation is optimal.
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