A Reliable Distributed Shortest Path Routing
Algorithm for Computer Networks

Sung Woo Park*, Young Chon Kim*™ Regular Members

AFE UM EHAE A3 A=A e &4t
HAGAR 4 dugF

EgR M B o5 reH & Ok N

e o

th ik o) A FRE Wl E g =Ll H 7} W ey diolel gl HEA] Ayt AR g 3] He) FES ER
ARg s o] Masheh tejuh, Bashe gt Az dA WS Sl & A e BB
YusE fA8) /17~ o] vi} w}r‘im Al zro] Atoll wlel oju) Lol ¥ AR YR RISt HRA4
- g S gle]i Qlated A Qo] Hate 5y Hake el e e Qo

W ibofl A i OM Aol B9 A HAE shAs] e AR 4R MY gag]Eol o3
Rk A /} Ela= o s J:ﬂﬂ%—% A AFE UEL M FE 43& A8 7HF wol o] &5 A
I ksl Bel lmaanord oalg) Zof 1A aka rh Ay += ¢ae] 58 Bellman-Ford ¢iral F9) 144
A8 gAstA A BarEE s7gatol A (Fowrgh s o waiohe]) BRI BFo £4TE AF A

7hokol) ub A &l ar o] & &) 7 s},

Abstract

In most computer networks, each node needs to have correct routing information for finding
shortest paths to forward data packets. In a distributed environment, however, 1t is very difficult
to keep consistent routing information throughout the whole network at all times. The presence of
out-dated routing information can cause loop-forming which in turn causes the significant degra-
dation of network performance,

In this paper, a new class of routing algorithm for loop detection and resolution 1s discussed. The
proposed algorithm is based on the distributed Bellman-Ford algorithm which is popularly adopted
for routing in computer networks. The proposed algorithm detects and resolves all kinds(two-node
and multi-node) of loop in a dstributed environment within finite time while maintaming the sim-
plicity of the distributed Bellman-Ford algorithm.

*Dept. of Information and Communication Eng. HanNam
University

Fhobol of it 4w 4l g okl

* Dept. of Computer Eng. ChonBuk National University
A3 o 7)) g ot

gl EE D94 3

24

RL/AFE U EAAE 8k g A b A dy oknel

L. Introduction

The routing algorithm of the original ARPA-
NET was developed on the basis of Bellman-
Ford algorithm([1]. In the original ARPANET,
the shortest paths are computed for every node
to every other node in a distributed manner. Due
to the simplicity and the robustness of the distri-
buted Bellman-Ford algorithm, many of other
computer networks adapted routing algorithms
similar to the original ARPANET routing algor-
ithm, Examples of such networks include TIDAS
{2], Datapac[3], DECnet{4], etc. During the op-
erating years (1969—1978) the original ARPAN
ET rouﬁng algorithm had been known to have
some deficiencies : poor adaptability to network
changes and unnecessary looping caused by link/
node failures, etc. The new ARPANET routing
algorithm[5] takes a totally different approach
based on Dijkstra algorithm[6]. Complete topo-
logical information about a network is maintained
at every node, and the routing protocol is sup-
ported for broadcasting changes in topology
throughout the network. In large-scale computer
networks, however, it 1s prohibitive to maintain
complete topological information at each node
and broadcast every topological change through-
out the entire network[7].

There have been continuous efforts to reduce
or eliminate looping problems of the distributed
Bellman-Ford algorithm. Merlin and Segall[8]{9]
first proposed loop-free algorithms which, like
the original ARPANET, maintain only local rout-
ing information as opposed to managing global
topology at each node. Jaffe and Moss{10] pro-
posed another loop-free algorithm similar to Mer-
lin-Segall algorithm but superior in terms of re-
covery speed. With Jaffe-Moss algorithm, loops
can be completely avoided during update periods.
However, it enforces a protocol which can cause
long respone time and congestions due to top-
ology changes, The protocol also requires updat
messages to arrive in strict order (FIFQ),

Some alternatives have heen proposed to re

duce looping effects. For example, TIDAS and
Datapace networks operate the so-called splithor-
rzon algorithm. When a node passes update mes-
sages to one of its neighbors, it replaces the
shortest path lengths through that neighbor by
the second ones. Schwartz also proposed the pre-
decessor algorithm{11]. In the predecessor algor-
ithm, each node identifies its predecessor on the
shortest path to a destination. This cun be done
by sending & special update message to the cur
rent route successor on the shortest path. These
loop-detection algorithms maintain the simplicity
of the distributed Bellman Ford algorithm, but
they only prevent two-node loops from forming
and cannot detect multi-node loops. 1t is known
that multi-node loops usually degrade network
performance more seriously than two-node loops.

In this paper. we propose a new routing algor
ithm which 1s the modified version of the distri
buted Bellman Ford algorithm. The proposed al
gorithm is based on the same idea as in | 12]. but
it uses a different scheme for loop detection,
preserving the distributed nature of Bellman Ford
algorithm. In the proposed algorithm, a node
locally constructs the shortest path trees(SPTs)
rooted at each neighbor using update messages
and checks the existence of looping for cach con
cerned path. An update message 1s modified to
mclude new information needed to construct the
STPs. The proposed algorithm detects (resolves)
any kinds of loop within finite time and requires
relatively small amount of additional memory and
computation time,

The rest of this paper proceeds as follows, The
distributed Bellman-Ford algorithm and the as
soclated loopimg problem are discussed in Section
2. Section 3 presents the proposed algorithm and
its improved versions. The proposed algorithm s
analyzed and compared with other competent
algorithms in Section 1. Finally, Section 5 sum

marizes this paper.

II. Problem Formulation

25

B 1 92 @i S0l "94 -1 Vol 19 No.1

2.1 Distributed Bellman-Ford Algorithm

In the distributed Bellman Ford algorithm, up-
date messages carry routing information among
nodes. Let us denote the mirnumum distance from
node j to node ¢ by I){(;, ¢} at an iteration step k.
The subscript 7 indicates the location where rout
ing decision 1s made. An update message sent out
from node ; for destination « after an iteration
step 4 includes the identity of destination and the

minimum distance from node j to destination J:
[d. /)j(»}‘.L/)]

Update messages are initiated by a node when
an adjacent out-going hnk lenght changes and are
sent out to all neighbors.

Let /i{;) denote an out going link length from
node / to node ;€ N{) where N(/) 1s the set of
neighbors adjacent to node : and Si(d) is the
route successor on the shortest path from node
to destination 4 at an iteration step k. Node / now
uses the latest estimate D5(5.d) sent from neigh
bor ; and /3(;) for deciding the mimmum distance
from node / to destination . Then node / bro
adcasts the latest estimate D5(.d) to all neigh
bors it it 1s different from the previous one (15,
d1# 05 'Gd). The update protocol performed at

node ¢ for destination 4 1s as follows :
Distance Update(J4) :

if (node 1 receives [d. D '(.d)] from neighbor)
DG < DY 'Gd)
it (node ¢ detects 7i(;) # {5 '(j))
Gy<=15 "4,
Route Update(d) :
DY) < mine o DG)
with p€ N (/) chosen,
Sild) < p.
Message Broadcast(d) :
D dy # DY ' d))

send d. D500Ld) | to all neighbors 7€ N,

To perform the above procedures, cach node

26

s ains two tables, the so-called distance table
a: b g table. The distance table has local 1Hut-
o siormation -distance (G (,d) +15(j)) fom
i to destination J via each neighbor j€ Vi),

Arter performing the Route Update procedure for
d-wmation f, the result is crored in the route
b runimum distace (05 70) and route suc-
¢ ssor (SPGE)) on the shortest pathe from node
Codestnation o, Figure 1 describes an example of

watetdistance and route) tasles atter conver

o, The hnes with arrow incicate the shortesi

vt hs from node b to all other nodes.

(2)

l Destination I Distance]
viaa | via b
a 1 X4
/ 3 2
b 4 1
q 5 2
(b)

Destination || Successor { Distance

Q o R
o o o f
N = B e

(©)

Fig 1. (a) 5 node network.
(b) Distance table at node ¢

{¢) Route table at node 7.

R/ PFEH NEY S

SIEE AEA Qlvs Wk Hyb i ard ok

2.2 Looping Problem

Due to the distributed nature of the algorithm,
route tables among some nodes may be inconsi-
stent with cne another at certain instants of time
during an vpdate period. This inconsistency hap-
pens due to out-dated routing information and is
the main cause of looping. As long as a loop ex-
ists, packets are forced to circulate the loop with-
out reaching their destinations.

Consider a 3-node network in Figure 2. Assume
that /5(h)==1, [5(c)=1 and I5(c)=3. There are two
possible paths from node a to node ¢: one via
node ¢ suddenly fails but node « continuously
sends data packets to node 4. Node » now ch
anges its route successor for destination ¢ from
node ¢ to node « and sends back packets to node «
with an update message [¢, 3]. After receiving|c,
3] from node 4, node 4 changes its shortest path
to the upper direct link. Returned packets from
node 4 are now re-routed through the new shor-
test path to node ¢. This temporary loop does not
affect network performance seriously and can be
avoided by no distributed routing algorithms sin-
ce they are inherent in a distributed environment.

3(100)

1 —~ 1
(—O+—0

Fig 2. Example of looping.

On the other hand, assume that /5(h)==1, /5(¢)
==]1 and {4(¢) =100 before the link between node /
and node ¢ fails, After the failurc of that hnk,
node # sends an update messgelc, 3] to node «
same as before. Even after receivingle, 3] from
node b, however, node « remains on the previous
shortest path and sends back|¢, 4] to node 4 and
node 4 again returns | ¢, 5], and so on, Node « and
node / continuously exchange update messages
until N5 ™(h, ¢)==101. In this case, node « contin

ues to send data packets to node / and vice versa

during 99 iteration steps, forming a loop. This
kind of loop exists for a while, sometimes perma
nently, and are more severe in degrading network
performance than the temporary loops discussed
before.

. Proposed Algorithm

3.1 Motivation

The main idea of the proposed algorithm is that
each node :/ constructs a set of SPTs, each of
which is rooted at its neighbor ;€ N(i). The
SPTs are constructed only with the update mess-
ages received from neighbors. Let an update
message for a destination contain the identity of
the destination and the estimated minimum path
distance as well as the predecessor of the desti-
nation on the shortest path. Since update mess-
ages are broadcasted via neighbors throughout
the network, every node in the network knows
the individual predecessors of all destinations on
the shortest paths after a while, Note that every
destination becomes the predecessor of another
destination unless the destination is in the leaf of
a SPT. Then node : can construct the SPT by
concatenating the predecessors of all destinat-
ions, The SPT built only with the update mess-
ages sent from neighbor j is the one rooted at
neighbor ;.

The SPT rooted at neighbor ; must include
every node in the network. Since the SPT is
constructed at node 7, it can be also viewed as
the one rooted at node /. That is, the root of
SPT, neighbor ;, is extended into node / by a di-
rect link between them. The shortest path from
node ; to destination ¢ via neighbor ; is included
in this SPT. To be a loop-free shortest path, the
same node should not appear more than once on
any path. To determine the existence of a loop.
all intermediate nodes on the path are checked by
a procedure, called bhack-tracking, starting from
destination 4% /. A loop 1s now declared to be
“formed” if node 1 appears more than once on the

path. Thus the neighbor ; providing the loop

21

SR B il T94 - 1 Vol 19 No.l

forming path should be excluded from being the
route successor of node : on the shortest path to

destimation .

3.2 Description

For the proposed algornithm to work properly,
the SPTs at each node should be correctly
maimtained at all times. Since routing information
concerning the predecessors of all destinations 1s
essential to constructing the SPTs, this informat
on should be known to every node in the net
work. For this purpose, a new field called the pre
decessor field 1s added mto an origimal update
message. Let I'j(;, d) denote the predecessor of
destination / known to node : on the shortest
path from node ; to destination « at iteration &,
Then, the new update message for destination
generated from node ; after an teration step A

takes the following form:
Ld, DiG.d), PG, d)]

where I’;(), &)= P{(S]d), d).

Before we proceed further to describe the pro
posed algorthm, 1t 1s assumed that the distance
table has heen already updated duc to either
detecting some changes of out going hink lengths
or receiving update messages trom neighbors,
The following twolpredecessor and ehgibility)
procedures are needed only when a node receives
update messages from neighbors, [f the algorithm
15 nitiated by the former case, the control of the
algorithm directly proceeds to update the route

table.

3.2.1 Predecessor Update

After exchanging update messages with neigh
bors, a node can construct the SPTs rooted at
each neighbor using the update messages sent by
the neighbors. For a destination, the shortest
paths included in the different SPTs may show
different predecessors of the destination. To keep
this information concerning the predecessors of

destinations on each SPT, 4 node needs another

28

table, called the predecessor table. Each column of
a predecessor table represents the SPT rooted at
cach neighbor. Figure 3 shows the predecessor
table and the corresponding SPT rooted at each
neighbor of node ¢ in the previous 5-node net-
work.

The (4. j) entry P’{(j, d) of the predecessor
table at node / after an iteration step % contains
the predecessor of destination « on the SPT ro-
oted at neighbor &€ N (/). When an update mess-
aged DS 'God), PN d)] arrives at node ¢ from
neighbor ;. 7} '(j,) in the update message re

places the (4. ;) entry of the predecessor table :

Destination || Predecessor

viaa | via b
e t 1
J e b
¥] i
g b b

()

Fig 3. (a) Predecessor table at node i.
(h)SPT rooted at neighbor a.
(¢ 1 ST rooted at neighbor b,

FWL/HFH B AZ 918 A4 At B Hebdiz 4y darel

Predecessor Update(d) :
if (node i receives ad [d, D57'(j, 4), P}, d)]
from neighbor ;)

PiG, d) < PG d).

3.2.2. Eligibility Update

Denote the set of nodes on the shortest path
from node i to destination 4 via neighbor j after
an iteration step k by SP{j, d). Each node / now
constructs a shortest path SPi(;, d) by back-
tracking, from destination 4, the predecessors on
the j-th column of predecessor table. Define a
back-tracked successor to be the node which is
last included in SP{(j, d) before the back-tracking
process terminates. The back-tracked successor
is denoted by B%(j, 4) and should be distinguished
from the route successor Si(j, d). The route suc-
cessor 1s one of the eligible back-tracked suc-
cessors whose path distance to destination
indicates a minimum. Under normal operation
when no loops are formed, it 1s obvious that

B, d)=j, Vi€ N{). (1)
Otherwise,
B, d) #5, Vi€ NU). (2)

The following theorem shows that the equa-
tions (1) and (2) can be used for loop-detection,
Theorem 1 Consider a shortest path SPE(j, d) from
node 1 to destination d via newghbor | after an iteration

step k. Then a loop is formed on the path SPiGi, d) if
Bi(j. d) #/. Y€ N,

Proof. The shortest path SPi(j. d) is obtained by
back-tracking the predecessors on the j-th
column of predecessor table. If Bi(;. d)#), the
back-tracking process must have terminated at
any other node between neighbor ; and desti
nation d by encountering node ;. This implies that
node / appears more than once and the loop has
formed on the path SPi(;. d).

The eligibility, 137(), &)=;, j€ N(:), is checked
every time the predecessor table is updated by an

update message. Suppose that an update message
for destination 4 arrives at node / from neighbor ;
and replaces the (4, ;) entry of the predecessor
table. The procedure to check the eligibility of
neighbor ; is as follows :

Eligibility Update(d) :

O5G,) # P57 d))

ped.
while (P, p) # 1)/* back-track*/
p=Pilj, p):
if(G=p) [*boBiG Ay Y

EX(j d)=1/*] is eligible */
else
Ei, d)=0. /*jis non-eligible ¥/

To avoid repeated computations, the resuits are
stored in the so-called oligibifitv table. The (d. ;)
entry of the eligibility table, denoted by Lf(;, i),
contains the eligibility of neighbor j as the route
successor on the shortest path from node ¢ to des-
tination d. If neighbor j is eligible for the route

successor, £i(j, d)=1, otherwise, L5(;, d)=0.

Destination || Eligibility

viaa | via b
a 1 0
f 1 1
b 0 1
g 0 1

(b)

Fig 4. (a) Ehgibility table at node 7.
(b) Eligible paths from node 7 to all other nodes.

29

3

i w0 o Vol Nodl

Frguie 1 show the elynbibity table at node @ m
e Onode aetwork, Foro this example, ot s
Necessary 1o exarmine the ST shown i Fgare
Ao hnown that o loop miay tormy die fo oy
micreases af e length sincee node tseld s found
in hoth SPTs tkrgure St and (b, Simce B3 (a
DR oh A Fia it 1 Also smce
Sl g Bt 00 That 1t telghbor o 1s not
cligible for the route successor of (he shortest
paths to node 4 and node ot pure i) On the
other haned, neighbor 2 should not be chosen as
the route =successor tor the shortest path to node
a0 Frgure 1thi shows possible loop free paths
from node ¢ to all other nodes, In this case, node o
onty necds to sclect aroute ~uccessor tneighbor o

or /1 for destination /.

3.2.3 Route Update and Message Broadcast

The route successor ~i(d) of node 7 for dest
nation J should be the neighbor @ whose entry £
(7.d) of the eligibilitv table indicates 1 while min
mizing the path distance from node @ to dest
naton 4. An update message soalso sent out to all
neighbors whenever DG or PHG G changes,
Thus the proposed procedures for updating the
route table and broadcasting update messages are

modified as follows :

Route Updatetd) :
DyGdY < mun ot LD G

With pe Nt chosen,

Message Brogdeasttd).
WOy 2 D5y or Pl d)y 207 7d)

send A DSOS | Lo cach netghbor e N

3.3 Improvements

The proposed algorthm mtroduced above wmay
cause o hittle problemy cupdate messages from
neighbors curive at a node i arbitraoy order and
could cause some dealvs in detectimg o loop, The
followitig theornn states that there exists a node
that plays o kev role o neintaimng the correct

SPTs at each node.

30

Theorem 2 Cousider a shortest path SPY(Ld) from
ninde o destination d after an tteralion step k. A node
SOSPIGWY] e its ronte successor if and only
o there is o node €SP which changes its prede-

cossor g the pati SPELD.

Proof. Suppose that no node on the path SP5(i.d)
changes 1ts route successor for destination d after
an iteraton step &, Then the shortest path should
remain same as before tSPEGLd) =NP5 L d) . This
imphes that there exists no node on the path
SO d) whose predecessor has been changed
and contradicts the assumption. Similarly, the

converse can he proved,

It Theorem 2, let us call the node ¢ which
changes its predecessor on the shortest path the
criiical node, The SPT changes 1ts structure
based only on the aritical node. To maintain a
correct SPT updates for some destinations
tdownatream of the critical node) should be pre
coeded by an update for the ontical node. How
cver. the proposed algorithm presented betfore
docs not guarantee an upddate message for the
critical node to be processed first, Some of down
strean destinations could be updated on the basis
of the old SPT and loops may be formed. Those
foops may not be detected even after updating
the ehgabihity table for the cnitical node, The
undetected loop will eventually be found when
update messages for those destinations arrive
later, Such delaved detection of looping can be
avorded by grouping some related update mess
ages, dll the update messages related to a same
Imic length change may be tied together. The
Predecessor Update procedure is first performed
for the destinations included in a group of update
maessages. Then, the control of the routing al-
gortthm proceeds to update the ehgibility table
for those destinations, By doing so, the prede-
cessor table s properly updated for the correct
decision ot cach neighbor's eligibility.

Another wayv s toinclude the identities of crits

cal node and its predecessor in an update message

,o
i X

2 it
#HiaF

B el 9lznir 91 e Ad iz o Hubdn g ekarat s

u

instead of a destination’s predecessor, Changing a
critical node directly affects the SPTs at other
nodes and happens only when a node on the
shortest path changes its route successor. (by
Theo;em 2}. Thus a node which changes its route
succcessor for a destination 1s responsible for
broadcasting the information concerning the criti-
cal node and its predecessor throughout the net-
work, An update message for destination 4 gener-
ated from node ; after an iteration step 4 now
takes a new form :

[d, DiG.d), e, PiGLe)]

where ¢ is a critical node and P}(j.c) is the prede
cessor of critical node ¢ on the shortest path S7'%
{(j.o).

The critical node 1s the one having different
predecessors, which is encountered first in back-
tracking, from destination 4 to node i 1tself, two
columns (one for S¥(4) and the other for 5§ '(4))
If node
change its route successor but only changes its

of the predecessor table, / does not
minimum distance to destination 4, node / must
have received an update message from the cur-
rent route successor on the shortest path to desti-
nation 4 or detected any change of the link length
connected to that route successor. If the former
1s the case, node ¢ copies the critical node and its
predecessor from the update message which 1s
sent by the route successor. Otherwise, node 7
does nothing. An update message does not neces-
sartly contain the information concerning the
cnitical node and its predecessor. The proecdures
to find a critical node is as follows ;

Critical Node(d) :
if (S{(d) # 85 (d))
ped:
ged;
while (P7{SI(d), p)=P{(5F ' (d), p)) [*back track*/
p = PHUSHA), p)
g« PHST), p)

cEepo [* critical wode */

P c)e PHSEC), o) o /* predecessor */
else if (D5.d)#=D5"'(.d))
if (node ¢ receives an update message from NP~
(d))
copy ¢ and P;(i.c) from the update message

else
¢ < null
P o) < nudl;
else
el

Pi(ie) < null;

The rest of the proposed algorithm is modified
to deal with the critical node. For destination 4,
the Predecessor Update procedure replace (;,)
entry instead of (j,) entry in the predecessor
table. The Eligibility Update procedure back-tr-
acks starting from the critical node ¢ instead of
destination 4 and is followed by the Critical Node
procedure, The Message Bradcast procedure also
broadcasts the modified update message contat
ining the identities of ciritical node and 1ts prede-
cessor to all neighbors.

V. Performance Analysis

The convergeence proof of the proposed algor
ithm refers to [12] since 1t differs from the
Humblet algorithm only in regard to the way a
loop 1s detected and resolved with the least
amount of overhead, we focus on analyzing the
performance of the proposed algorithm in terms
of recovery speed from link/node failures in the
following section, The recovery speed is defined
as interval between the time a network runs into
an unstable state due to link/node failures and
the time the network returns to a normal states.

In the proposed algorithm, each node scans all
the downstream nodes starting from a destination
to determune the eligibility of its neighbor as a
route successor and, optinally, to find out the
critical node on the shortest path. In the worst
case, a node performs back tracking for all de-

stinations via all neighbors. [n other words, per-

31

SR R iR il 941 Vol 19 No.l

iorming the Eligibility Update and the optional
« ritical Node procedures in addition to updating
“he route table results in the increased computat
onal overhead of OGnN/i) where m 15 the number
»f neighbors adjacent to a node, \ is the total
aumber of nodes 1n the network, and /7 is the
height of the shortest path, It is also beheved
that the storage overhead to maintain additional
tables(predecessor table and eigibility table) is
negligible due to the dramatically reduced cost of
memory, The size of update message 1s slightly
increased to include predecessor (optionally, criti
cal node) field and also does not significantly de

grade the overall network performance.

4.1 Speed of Recovery

Before demonstrating the recovery speed of
the proposed algorithm, we assume that it takes
a unit time for an update message to he processed
in a node and to traverse a link. We also assume
that lower level (physical layer and hnk laver)
protocols maintain an error free communication
Iink bhetween two nodes, Then the following the
orem states that a loop can be alwavs detected
and resolved by the proposed algorithm within a
finite time depending on the number of nodes
involved in the loop
Theorem 3 (onsider au vut-going Link length change at
an eration step kocausing loop fovining al auother
iteration step k' = k.

Ca) There exists at least a node v inside the loop such

that

BSASY (), dY #5550

where k=0
(1) Denote the number of nodes mvolved in the

loop by /. Then

=k <

PProof. (a) Route successors of the nodes involved
in a loop are nside the loop. While the loop

exists, update messages contamning finite path

32

distance to destination 4 will be circulating the
loop continuously. The existence of such update
messages implies that there exists at least a path
leading to destination . Otherwise, the loop is
broken automatically by the node receiving an
update message containing infinite path distance.
Thus, by back tracking the predecessors from
destination . we should be able to find a node ¢
whose back-tacked successor 85 (S5(d), d) on the
path SPi(id) is located outside of the loop. How
ever, since the route successors of all nodes in
the loop should be located inside the loop, £ (N}
(d), d)# N,

(b) The time needed to detect the loop is be
tween & and A7 (from (a)). At an iteration step
&" node 7 receives and update message from the
route successor S; (), The update message con
tains the information concerning the backtracked
successor B (ST .d) #<5(d). This update mess
age 1s, 10 the worst case, generated from the
predecssor of node + and received again by node
after circulating the whole loop. Then, it takes at
most /¢ time units for node 7 to recognize and es
cape {from the loop.

This theorem directly applies to the proposed
algorithm with the Critical Node procedure. For
the theorem also to be valid for the proposed al
gorithm whithout the Critical Node procedure,
update messages must be sent to neighbors 1n
group so that delaving problem due to out-of-or

der update messages can be removed,

4.2 Compariosn to Other Aigorithms

4.2.1 Loop-Free Algorithms

Among a series of loop free algorithms [8]19]

105, Jaffe Moss algorithm 1s the best in terms of
revovery speed after link/node failures. The sec
ond version of Jafte Moss algorithm provides the
recovery speed of 00 where /i 1s the height of
the shortest path tree. More precisely, 1t takes 34
unit times for the Jaffe-Moss algorithm to restart
normal routing updates since faillures occurred.

In general, 1t 1s difficult to compare the lengths

of i Jaffe Moss algorithm and 7 1in the proposed

e

20
aff

/

7} 3
(=]

3L
T

B MIE SIS 919 41

[2N
R T

4 LA e -1 0] &
d el e v 4y el E

algorithm since they chang: lynamically depen-
ding on the network topologi~s and traffic con-
ditions etc, When link/node failures happened in
the downstream of a node and a loop is formed, /
may b',e less or greater than 34, that is, /=0(h). [t
is apparent that the proposed algorithm is more
efficient than the Jaffe-Moss algorithm when [is
less than 34. In practice, there are many cases
where /<3% provided that the network is not
seriously unstable, The chances of [being less
than 34 can be further reduced by carefully
dimensioning the network.

4.2.2 Loop-Detection Algorithms

Most of loop-detection algorithms are effective
only for preventing two-node loops. To cope with
multi-node loops, they put too much burden on
the network with update messages or processing
uverheads[13].
overheads, Humblet algorithm[12] is superior to

From the view-point of those

others and are considered here for comparison
with the proposed algorithm.

[n Humblet algorithm, loop-detection is perfor-
med by constructing the local STPs rooted at
neighbors-the same concept used in the proposed
algorithm. Thus the recoverv speed from link/
the
Humblet algorithm uses a loop-detection tech

node failures in / time units. However,
nique similar to Dijkstra algorithm. The compu-
tational overhead to detect loops becomes (}(mN*)
which 1s larger than 0(mhN) of the proposed al-
gorithm (usually 4<.\N). A more careful obser-
vation shows that, in the Humblet algorithm,
some destinations are updated regardless of their
necessities once the loop-detection protocol 1s
activated. To the extreme case, the whole STP is
reconstructed even when an update message for a
single destination arrives at a node. On the other
hand, the proposed algorithm performs routing
updates only for concerned destinations and
processing overhead to detect loops can be saved.
Therefore, it can be said that the proposed algor-
ithm is at worst comparable to the Humblet al
overhead

gorithm in terms of computational

(when all destinations require to be updated and
h=N\).

V. Summary

After a brief discussion of the distriuted Bell-
man-Ford algorithm and the associated looping
problems, a new distributed shortest path routing
algorithm for loop detection and resolution has
been proposed. The proposed algorithm gathers
routing information (SPTs) from the local rout-
ing information (update messages) sent from nei-
ghbors. From the SPTs constructed locally at
each node, a loop is detected by any node invol-
ved in the loop in a distributed manner. The
proposed algorithm then immediately resloves the
loop by changing the current route successor on
path. Any kinds
multi-node) of loop can be ehminated and the re-

the shortest (two-node and
covery speed depends on the number of nodes
involved in the loop. That 1s, with the proposed
algorithm, loops are allowed to exist for a finite
time and are inevitable under any distributed
algorithms.

The proposed algorithm requires relatively sm-
all computation and memory overhead. No extra
upddate messages are generated and communi
cated over the network, The size of an update
message 1s slightly increased by including the
predecessor field (optionally, the critical node).
The proposed algorithm also maintains the sim-
plicity and the dstributed nature of Bell-man-
Ford algorithm., Compared to others, the pro-
posed algorithm turns out to be more efficient un-

less the network is seriously unstable.

References

1. M.McQuillan, "Adaptive routing algorithms for
distributed computer networks”, Bolt Beranek
and Newman Inc., BBN Rep, 2831, may 1974.

2. T. Cegrell.
DAS message swithing network”, [EEE Trans.
Comman., vol. COM 23, pp. 375585, June 1975.

33

“A routing procedure for the TI-

3. . Sproude and I Mellor, "Routing, tlow. and
corge=tion control in the Datapac network,”
HLE D vmanen . vol, COM 29, pp. 386391,
April 101,

1. DECnet, Digital Network Architecture, Rout

ing Layer Functinal Specification, Version 2. (.

0., Digital Equipment Corp., Maynard, MA,

1983.

M. McQuillan, I, Richer and E. C. Rosen,

“Then new routing algorithm for the ARPA-

NET”, IEEE Trans. Commun., vol. COM-28, pp.

711-719, May 1980.

6. E. W, Dykstra, “A note on two problems in

o2l

connection with graphs,” Numer. Math. vol. |,
pp.269-271, 1959
7. D.P. Bertsekas and R.G. Gallager, Data Net-
work, Englewood Cliffs, NJ : Prentice Hall, 1987.
8. M. merlin and A, Segall, “A fal safe distri

buted routing protocol”, IEEE Trans. Commuon.,

B 52(Sung Woo Park) 4591
196251 991 13204
1981451 391 - 198581 29 i el ot g ebat Sl
&k ALY
198581 191~ 198683 391 sh) dleofe} 4107 91 09
1986451 691 - 198941 82! - Texas A&M Univ. Dept. of
Electrical Engineering(MS)
198951 92!~ 1991x1 122 : Umiv. of Califonia, Irvine
Dept. of Electrical and Com
puter Engineering(Ph.)
L9928t 381 - el ghybul bt gl sl otel i g

s -7k AR o) s Computer Networks

34

vol. COM-27, pp. 1280-1287, May 1980.

9. A, Segall, "Advance in verfiable fail-safe rout-
g procedures™, [EEE Trans. Commun., vol.
COM 24, pp.491 497, April 1981.

10. M. Jatfe and F.H. Moss, “A responsive distri-
buted routing algorithm for computer net-
works”, IEEE Trans. Commun.. vol, COM-30,
pp. 17581762, July 1982,

11. M. Schwartz, Telecommaunication Networks: Pro-
tocols, Modeling and Analvsis, Addison Wes-
ley, New York, 1987.

12. P. A, Humblet, "Another adaptive distributed
shortest path algorithms”, 7EEE Trans. Com-
muon, vol, COM -39, pp.995-1003, June 1991.

13. K. G. Kang and M. S. Chen. “Performance
analysis of distributed routing strategies free
of ping-pong-type looping”, IELE Trans. Conm-
wn.. vol, C-36, No.2, pp. 129137, Feb. 1987.

& sk J{Young Chon Kim) EEE
195611 129 109 4
Shal s darub el 23t e g shat 2w

ARyt Adle wa

