A Routing Algorithm for Minimizing Packet Loss Rate
in High-Speed Packet-Switched Networks
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ABSTRACT

Gradient projection (GP) technique is applied for solving the optimal routing problem (ORP) in
high-speed packet-switched networks, The ORP minimizing average network packet loss prob-
ability is non-convex due to packet losses at intermediate switching nodes and its routing solution
cannot be directly sought by the GP algorithm. Thus the non-convex ORP is transformed into a
convex problem called the reduced-ORP (R-ORP) for which the GP algorithm can be used to ob-
tain a routing solution. Through simulations, the routing solution of the R-ORP is shown to be a
good approximation to that of the original ORP. Theoretical upper bound of difference hetween
two (ORP and R-ORP) routing solutions is also derived.

atgpel wizl wgtdol Al HA 4y o] - (ORP :Opumal Routing Problem)# &) #4317 93l
gradient projection (GP) 711 & * g&-allvt, b sl sf2lel 24 &S #H2gshi= ORPL: gk xriit
¥ O

ol Af s 7l 5o} E&4l¥l o x4 non-convexv} ¥ o], GP ¢t NLI~°ﬂ o] «>H i L dsEf s AF ek ot
vt ubzbA, o] non-convex ORP# reduced-ORP (R-ORP) ¢} 4-u] 4= convex Wit el Azl & 7L
ARNE 8taat GP ot 5% ol &8k FSFE we) delel ofsl iz RORPE saf dolzl 3

=al7h el ORP#) 3 gizsfo] ob% (:Ahghe el Eul a, ORPS} R ORPS 53 loldl 5
Azshrrel afolo] glojre] o] s 41q) AHdte] frL¥Iv),

kel &ha A W e Al ko)
WL EW 9 T

66



/i del gl gl w3l £H RS HAaastv) 9ek Ay deol Yuel s

I. Introduction

The advent of fiber optics combined with VLSI
technology enables communication networks to
operate in a very high-speed (Gbps-Thps) enviro-
nment [1]. Higher communication bandwidths are
essential to the applications such as broadband
integrated services digital network (B-ISDN).

The transfer mode recommended by CCITT for
the basis of B-ISDN is called the asynchronous tr-
ansfer mode (ATM)[2]. In ATM networks, mes-
sages are split into short fixed-length (53 bytes)
packets with address labels attached. While be-
ing delivered to their destinations, some packets
are lost for several reasons, one of which is buffer
overflow at intermediate switching nodes. When
a packet arrives and finds no available buffer
space at a switching node, it 1s simply discarded
by the node. The tolerance for packet loss varies
with the type of traffic carried. In ATM net-
works, end-to-end packet loss probability 1s nor-
mally required to be less than 107" to 10 " and we
are concerned about minimizing average network
packet loss probability. In [3] and {4], an ATM
network is modeled by the network of M/M/1 or
k-M/M/1 queues — the objective functions are
average network packet delay. Lee and Yee [5]
proposed an algorithm minimizing the maximum
of link packet loss probabilities in an ATM net-
work. However, the average network packet de-
lay does not precisely reflect the effects of lost
packets and the minimax algorithm in [5] does
not guarantee its routing solution to he ontimal,

In the following discussions, we are not restric-
ted only to ATM networks but focus on more
generalized high-speed packet-switched networks.
These high-speed networks networks allow vari-
able sizes of packet length and can be modeled by
the network of k-M/M/1/b queues. The optimal
routing problem (ORP) in high-speed networks
takes average network packet loss probability as
an objective function to be minimized. Consider-
ing packet losses at switching nodes, this ORP
becomes a non-convex problem that cannot be

solved by the gradient projection (GP) algor-
ithm, The GP algorithm is applicable only to con-
vex problems [6]. To detour this difficulty, we
assume that no packets are lost at intermediate
switching nodes on each of active paths. With
this assumption, the ORP can be transformed in-
to a convex problem called the reduced-ORP (R-

ORP). Then the obiective function (average net-
work packet loss probability) is convex with re-

spect to its variables (path flows) and the (rout-
ing) solution can be obtained by using the GP al-
gorithm,

The routing solution of the R-ORP may be dif-
ferent from an exact optimal routing solution of
the original ORP, The analytical results show
that the difference of two (ORP and R-ORP) ro-
uting solutions 1s negligible when the network is
not heavily congested. For example, the percent-
age difference of two routing solutions reduces to
be less than 1% if the maximum link packet loss
probability is in the order of less than 10 " (when
the buffer size of each queue is 30). Numerical
examples support that the difference can be
ignored even with higher maximum link packet
ioss probabilities,

This paper is organized as follows. Section 2
introduces a flow model of high-speed packet
switches and the ORP for high-speed networks.
In Section 3, the R-ORP for high-speed networks
is proposed and the GP algorithm as a solution
technique is discussed. Then the theoretical up-
per bound of differences in network flows and
routing solutions between the ORP and the R-
ORP s provided. In Section 4, numerical exam-
ples are presented to demonstrate the results obt-
ained from Section 3. Finally, Section 5 summar-
1zes this paper.

[I. Problem Formulation

2.1 Flow Model

Marny switch architectures have been proposed
recently for high performance packet switching,
e. g., Knockout switch 7] and Ratcher-Banyan
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switch [8]. etc. Switches for high-speed net-
works can be classified according to the location
of buffers :input queueing, output queueing, and
shared buffering. The switches based on output
queueing principle are known to have the best
performance among others and achieve optimal
throughput-delay performance |9]. For a typical
high-speed packet switch with output queueing,
every out-going link can be modeled by k-M/M/
1/b queue as shown in Figure 1.

Fij/k

(\Cii/k
N

( )C;j/k k lines

Figure 1. A k- M/M/1/b queueing model

For ATM networks, k-M/D/1/b queues seem to
be more suitable than k-M/M/1/b queues since
the ATM uses a fixed size of packet length. With
the k-M/D/1/b queueing model, however, 1t 1s dif-
ficult to construct and analyze the network of
queues since packet arrival after the first queue
at their entry points of the network can be no lon-
ger described by Poisson process, [t is not known
that Kleinrock independence approximation still
holds for the network of M/D/1-like queues.

For the k-M/M/1/b queueing model, it is as-
sumed that any packet bound for an out-going
link is routed with equal probability to any output
port associated with the link. Each channel in an
out-going link has an equal capacity ¢ ,;/k where
(;; is the total capacity of link (7, 7). Let us de-
note input flow on an out-going link (Z, ) by I,.
Then packet loss probability on link (7, 7), deno-
ted by B;;(F;;), 1s given by

- (I*p,)pf
Bz‘j( Fip) = —__jhﬂ_J

1—pi
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where p;, = I;;/C,; is the utilization factor of link
(7, 7). Note that B;;{I;) is a function of F;;(also
;) and 1s not convex with respect to £y;. It
seems to be convex when p; <1, but levels off
approaching to 1 as p;; increases beyond 1. Pa-
cket loss rate on link (7, 7), denoted by L;;(F;;), 1s

given by
(1=p.,)ey"

bt
1=

L) = ¢y e

and now becomes convex with respect to Fi;.
Since L,;(I;;) is twice continuously differentiable,
it can be used as a link cost function for the ORP
based on the GP algorithm.

The first and second derivatives of L;;{F;;) with
respect to F;;, which are essgantial for the GP al-

gorithm, are also given by

DL (b2l e

I Fij) = (1—-p2thHe
and

. b+
LiilFi;) L !

B (.l/ (IAI)?;I):{

bl = (b+2) (1 —php — b ]

Let £ denote the set of links in the network. In
1101, it is proved that 0 < L;;(F;;) <1 and Li;(F.;)
>(. Vi, j) € £ for a more general case (M/G/n/
n queueing model).

2.2 The Optimal Routing Problem (ORP)

In high-speed networks, packets are not pre-
served at intermediate switching nodes. Thus for
each path p and each link (4, ), path flow x, and
link flow F;; have the following non-linear re-
lationship :

Fi=Y (xp- I (1= BulFu)). pEPu, YWEW
b Py e bl (1)

where U/;;(p) is the set of upstream links of link
(7. 7) on path p, P;; is the set of all the paths
traversing link (7, /) € £, P, is the set of admuss-
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ible paths for origin-destination (OD) pair w, and
W is the set of OD pairs. Let us denote average
network packet loss probability by B(F) where F
={F;;: (i, 7)€ L}. Then B(F) adopted as an ob-
jective function in the ORP is defined by the sum
of link packet loss rates divided by the total
traffic demands over the network :

B(F) = Y Lij(Fij) (2)

1
Y Wpee

where ¥ =Y wew 7w. The link-formulated ORP for
high-speed networks is that of minimizing the ob-
jective function (2) subject to the traffic balance
equation (1).

By eliminating the constraint (1), the link-for-
mulated ORP can be transformed as follows ;

minimize B(x)
Epe[}w Xp = Vw, VwGW,
xp 20, VpEP,, YweWw,

subject to

This path-formulated ORP for high-speed networks
becomes a non-convex problem due to the non-lin-
ear traffic balance equation (1). Thus, there may
exist several local minima that make it impossible
to use the ordinary GP algorithm for solving the
ORP. The routing solution of the ORP, when
solved by the GP algorithm, may not be globally
optimal.

[l. The Reduced Optima! Routing Problem
(R-ORP)

In the ORP mentioned in the previous section,
path flows are correlated with each other. There-
fore, packet losses on a path affect those of other
path flows, causing an objective function (aver-
age network packet loss probability) to be non-
convex with respect to its variables (path flows).
The idea behind the R-ORP is to get rid of this
correlation by ignoring the effects of packet
losses at intermediate switching nodes. That is,
we assume that no packets are lost at upstream

switching nodes of link (¢, j). Then Fj; is expres-
sed by

Fz'j::z Xp. (3)
pe Py

This is a simple linear traffic balance equation
and replaces the constraint (1) for the R-ORP,
The convexity of L;;(F;;) with respect to F;; im-
plies that B(x) :—1; Yipee Li(Fi;) is also con-
vex with respect to x =1{x,}, p€ P,, weW due to
the linear property of the equation (3). The R-
ORP now becomes a convex problem and a un-
ique global minimum exists, Thus a routing sol-
ution: for the R-ORP can now be obtained by ap-
plying the ordinary GP algorithm.

3.1 Flow Difference between the ORP and the R-ORP

To disting uish input link flows between the ORP
and the R-ORP, let input flow on link (7, ;)€ £
for the ORP be denoted by F%and for the R-ORP
by F£. Denote also the portion of packet loss rate
on link (7, ) due to path flow x, by LE(#2) (path-
link packet loss rate). Rewriting the traffic bal-
ance equation (1) for the ORP,

Fi=3Y (xp— ¥ LO(FED)=FE—AF,;

— 2
pPEP; (k¢ Uy pt
where
R __
Fi=Y x,
peP;

and the input link flow difference on link (7, ),
denoted by AF;;, between the ORP and the R-
ORP is given by

Al = s SR (ES).

p;:_‘P.-,‘ (KI)‘E—;Ju(p)
In Section 2 it was shows that AF;; causes B(x)
for the ORP to be non convex with respect to x =
ixpi. Overall network flow difference AF is de-
fined to be the link flow differences summed over
the network :
AF ==Y AF,;.

@peg

69



FEBLRE8 &3 Lt '94 -1 Vol.19 No.1

Since Ff > Ff for each link (7, /)€ £, AF is always
greater then or equal to zero.

Let us denote Li(F?) by path-link packet loss
rate due to input flow F? at the n-th link on path
p. The overall path packet loss rate on path p,
denoted by 1.”(x,), is as follows :

"P
LP(xp) =Y LE(F?)

n=|
where k, is the number of hops on path p. Recall
also that the average network packet loss prob-
ability 1s given by

where the overall network packet loss rate 1s g1

ven by

Lx) =Y L;(FD

e e

= E S Lp(Xp).
we W pe P
If we define network diameter to be 4=>max e, wen
hy. then AF 1s upper-bounded by the following
theorem.

Theorem 1
A < hix).
Proof :

AF = S Al

Hjre £

=T TS
Wjie g po Py ke Uy

=Y ¥ T SoLRtEg)
weW po Py tijicp ke belUyp

hp m
= Y ¥ S AR LECF,)

e —
weW pe Py m-t n-)

< : : h/;l,p(}’p)
wsW pe P,

<h S S IPxp)
w' W p- P,

< hl(x) o
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This can be quite easily understood by intuition.
For each link (7, 7) on path p, packet losses at
upstream links are ignored. Then the flow differ-
ence on path p, denoted by AF,, will be at most

A[“/; == h/) If’(xf,).

Summing up AF, over all paths pe P,, weW, it
is obvious that A/l is upper-bounded by Al(x)
since h=hp, VPpE D, VWEW.

3.2 The GP Method for the R-ORP

The GP algorithm can be applied for solving
the R-ORP since the objective function B(x) 1s con-
vex with respect to path flows x=ix,i. p€ Py,
well’, Let pwe€ Py be the path having the mini
mum first derivative length among all admissable
paths for we . As described in |6], the original
R-ORP is transformed to involve only non-nega

tive constraints :

minimize Blx)
subject to xp ),

PEDL. p# P, VWEIV,

Now GP iterations for solving the R-ORP are as

follows :

i maxi, x§ —a* (b, by — by,
PELw, PF Pu, Ywelt

where the first derivative length

by = Y LR, by, = min bj,

U jiedy pe Py,

and the second derivative length

By, = 3

e

Li(FE.

g Ly
Here, [, is the set of links belonging to a path p
and 1., 1s the set of links belonging to either path p
or p.. but not both. Step size & can be chosen a con-
stant value or can be adjusted according to b},

with iteration step k. The optimality conditions
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for which the GP algorithm terminates require
that all the non-zero path flows produce equally
minimumn first derivative length when an optimal
routing solution is achieved.

3.3 Upper Bound of the R-ORP Solution

Let us denote average network packet loss rate
for the ORP and the R-ORP by L’(x) and L*(x)
for any x, respectively. Suppose that there exists
an optimal routing solution x}, of the ORP for
which the GP method cannot be used. Applying
the GP iterations to the R-ORP, however, a rout-
ing solution x% for the R-ORP can be obtained
since L*(x) is convex with respect to x.

We are interested in how close L*(x) is to L
{x) around the optimal routing solution x}; : more
precisely, the difference between LF(x%) and 1V
(x). For any x={x,}, peP,, weW, Ffand FY
can be computed in most cases [11] and 7;;(F%)
2L (F9, V({i, 7)€l since F{=FJ, Vi j)ekL.
Thus, it is obvious that

L¥(x) 2 L9(x), Vx=ixp}, pEPw, wEW,

Let us define /,=max; ee L;(FY. Then the
following theorem states the upper bound of L”
{x).

Theorem 2

LR < L0x) (1+hio), Vx=1ixp}, p€ P, weW.
Prof :

LRx)= Y. Lij(F§

pa

Hpee

= : in(Fg +AF1‘/)

ijee

=Y LiFD+ Y AF;L(FD

et

pee UgE g
< 1{x) + 1o AF
< LYx)+hio L7 (x) 1

In the proof of Theorem 2, the third equality was
obtained by ignoring higher order error terms of

the first order Taylor expansion and the last in-
equality comes from Theorem 1.

At an optimum, define the percentage differ-
ence of two objective functions L(x%) and L”(x})
between the ORP and the R-ORP by
5= M) — L7 ()

Lo(x)
Then ¢ is again upper-bounded by the following
corollary.
Corollary 2

d< ki,

Proof : At x =x7,, from Theorem 2,

LRx8) = L) < hlo 17(x)).

Since LX(x%) < L¥(x}),

IR(xR) — L0 < hlo 17(x)). (4)
Divide (4) by L"(x})), then we obtain

L Th (]

Corollary 2 tells that 4 can be arbitrarily made
small depending on the value of /..

Table 1 and 2 show, for a generic link (¢, j), the
values of B;; and L;; as a function of p,; for differ-
ent buffer sizes (b=230 for Table 1 and b="50 for
Table 2). Define the maximum link packet loss
probability to be b,==maxq, j,e; Bij{F;). Suppose
that b, at an optimal routing slution of the ORP is
in the order of 10 * This order of packet loss pro
bability is normally required by high-speed net-
works including ATM networks. Assume also
that .==10. Then the upper bound of & between
the ORP and the R-ORP for the case of 6= 30 is

=1.34-10 "% = 0.1%. Even with . =100, é becomes
approximately 2% and 1%, respectively. With the
smaller /,;, & decreases more dramatically to
almost 0%.
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Table 1. Packet loss probability and the first derive of
packet loss rate for a generic link (7, 7) (b=

30).
p] By Li
08 | L44-000° 0 Adl-100"
0.4 6.92-107" 21010
05 | desel0m L4010
I O X (VR N1 S (A
0.7 6.76 - 107 | L9410 ¢
S U kAL AL SN SR 1.
| 08 ;w;ur*wqj 6,70 - 107
0.9 141107 | L2 10

Table 2. Packet loss probability and the first derive of
packet loss rate for a generic link (7, 7)) (b

50).
By ‘ Li 1

503107 250 10F

761-10 0 383-10°w
410w

06 | 32100t 160100
07 | 540-107  2E3-100
I R (A R R RS R
oy 581 107 219 - 1

IV. Numerical Examples

In this section, the accuracy of the R-ORP ro
uting solution is demonstrated by numerical ex-
amples. The source program is written in C and
run on a SUN 4/370. Figure 2 shows the topology
of a 14-node network to be simulated. Assume
that every link between switching nodes has
fixed 32 channels each of which is attached by a
buffer of size b=23(.

For traffic demands, two sets of OD pairs are
generated ;80 and 95 OD pairs. Then the GP iter-
ations are applied for solving the R-ORP. Each
OD pair 1s randomly generated with its traffic de
mand ranging from 1 to 7. Total tratfic demands
generated are 265.96(for 80 OD pairs) and 321.54
(for 95 OD pairs), respectively. The unit of traf-
fic demands would be packets/sec. For GP iterat-
lons, we use a constant step size which is care-

fully chosen to avoid any undesirable behavior

12

Figure 2. 14 node network.

(oscillation or divergence, etc.)

For the two cases (ORP and R-ORP), the ob-
jective functions and the maximum first derivat-
ives of link packet loss rate [, are compared with
different utilization factors. Let us define the max-
imum first derivative of link packet loss rate for
the R-ORP to be /i =max; hep L (FH. Table 3
through & show the values of objective function
(B"(x) and B“{x)) and the maximum first deriv
atives of link packet loss rate ({5 and /,,) at some
iteration steps for each set of OD pairs. Denote
the Lnk utilization of mostly congested link at
each iteration by pr. As the GP iterations pro-
ceed, B%(x) as well as p, decreases monotoni-
cally. The last row of the tables indicates B*(x)
at the routing solution x}, of the R-ORP. To com-
pute B(x) of the ORP at each GP iteration, we
use the method proposed by [11]. The iterative
method in [ 11] recursively updates link flows in
time (iterations) and space (network) until the
following stopping criteria is satisfied :

v umwm»—B“*UgHsawm:Z BO*'(Fi)
@ g Liel
where k indicates an iteration step.

Using the routing solution of the R-ORP, an
actual optimal routing solution of the ORP can be
estimated by Theorem 2, From Table 3 and 5, we
observe that § decreases as the GP iterations pro-
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ceed. The reason is that, from Corollary 2, é is
proportional to {, multiplied by & As py decrea-
ses, /o and [y also decrease monotonically. From
Table 4 and 6, it is noted that the difference be-
tween [ and {7 is less than 1% and reduces to 0%
around x% (when pr=0.66 in Table 4 and pr=0.
81 in Table 6). It is obvious that BY(x},) < B"'(x,‘,)
since FI<FE, (i, 7)€L for all x ={x,!, pE Py,
eW. Assume that /; at x% is always greater than
or equal to {; at x},. This assumption is reason-
able since B*(x%) = B’(x},) —but yet to be proved.
Then, the upper bound of § can be estimated : 6 =
hl; < hlz=0.03% (80 OD pairs) and é = hl, < hlx
=7.49% (95 OD pairs). For both cases (85 and 95
OD pairs), =9 at the final routing solutions.
The upper bound of § can be reduced further by
increasing the size of output buffer. If =50, § =
0.00% (85 OD pairs) and 6 =0.21% (95 OD pairs).
In practice, the above theoretical upper bound of
& is quite loose. From Table 3 and 5, when the
routing solutions of the R-ORP are obtained, ¢
approaches to 0 for both cases.

Tabie 3. Average network packet loss probability and
percentage difference (80 ODs)

- LB ] e
¢ 531-10° | 505-107 | 51
o '99,19_;;; ) - 107

506107 | w0
1 bW 10 [ L7610 00
301100 00

0 | 443-100 00
0.66 | 6.96-107 696107 00

Table 4. Maximum first derivative of link packet loss
rate (80 ODs)

B Pr L le L
[ 095 | 283107
0.90 1.09 - 107!
o | 3310
0.80 7.76 - 107
075 1.48- 107
070 | 235-107
0.66 | 3.78-107%

Table 5. Average network packet loss probability and
percentage difference (95 ODs)

pe | BRm) T B | 8%
| 095 | 832-10°  7.91-10° 52
090 | 271-10° | 266-10° L9

C0x5 | 6800107 | 677100 | 04

051 | 148- 107" 14810 | 0.0

Table 6. Maximum first derivative of link packet loss

rate (95 ODs)
LI I lo
R A0 ess
10 J L4107
3‘1‘1 L 836010
10°* i 8 321077

V. Summary

This paper proposes that the GP algorithm can
still be valid for solving the non-convex ORP in
high-speed networks, For this purpose, the orig-
inal ORP is transformed into the R-ORP by as-
suming no packet losses at intermediate switch-
ing nodes, The difference of input link flows be
tween the ORP and the R-ORP, and its upper-
bound 1s derived. The smaller the difference of
input link flows is, the closer the routing solution
of the R-ORP is to that of the ORP. The percent-
age difference of optimal routing solutions be-
tween the ORP and the R-ORP is also derived
analytically. However, the upper bound of the
percentage difference 1s quite loose. Numerical
examples show that the actual differences are
much smaller than the theoretical ones. In sum:
mary, applying the GP algorithm to the R-ORP
in high-speed networks provides an approxi
mation to the optimal routing solution while sa-
ving computation time. It turns out that this ap-
proximate routing solution is close enough to the
actual optimal routing solution if the network is
not heavily congested.
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