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Abstract

This is a continuing work of Van & Lee[1]. Some unresolved results of theirs are first
discussed more, and then Tulis's[2] exact theory is briefly reviewed. A second order theory
derived from Tulin s is used as a basis to judge the accuracy of the Poisson and the Daw-
son{3] free surface boundary condition(FSBC) in the low speed region for a two-dimen-
sional submerged body. In search of a new FSBC, a purely numerical approach is adopted,
and we show one candidate and its performance, which is satisfactory to a certain degree.
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1. Introduction

Van & Lee[1], which will be denoted as VL af-
terwards, reported on the performance of vari-
ous FSBC in computing the wave resistance for
a submerged body and of a ship. They compared
the Poisson, the Ogilvie[4] and the Dawson[3]
FSBC using the same panel code, and concluded
that ‘we are still in need of a theory which gives
a BC on the FS more accurate than those
tested, and more practically applicable than the
exact nonlinear BC' .

This paper is a continuing work of VL. We
first have more discussions of the result of VL,
then a theory put forward by Tulin[2] some
years ago is briefly reviewed since his theory
gives an exact method for predicting the surface
wave produced by a moving submerged body.
Examining the results of the Tulin' s theory with
those of the other approximate FSBC s used in
VL, we shall reconfirm the need of a new FSBC.
Then follows the newly proposed FSBC, its re-
sult and the discussion, consecutively.

2. More Discussions on Van & Lee [1]

We begin with summarizing the result of VL,
which may have sounded controversial when p-
resented. They gave computational results for a
submerged circular cylinder and for the
Salvesen(5] s hydrofoil using 3 different FSBC
s, namely the Poigson s, the Dawson s and the
Ogilvie s.

First of all, they were then not aware of the
continued works of Ogilvie' s school on the low
speed theory and }gs FSBC.e.g.. Ogilvie & Chen
[6] an Chen & Ogilvie[7]. In these works they
claimed that the nonhomogeneous term in the
Ogilvie FSBC is not proper, which had been
pointed out by Dagan[8] and also by Keller(9]
and thus that the works following the Ogilvie s
fashion, for instance, Baba & Takekuma(10],
may not be a valid approximation for the low
speed problem. Furthermore, they showed that
for the two-dimensional surface-piercing body
the wave resistance is proportional to U* as U
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— 0, where U is the forward speed. Although
their estimate may be correct from the view-
point of the perturbation theory, it is not in ac-
cordance with our experience, and as they noted
not likely to be useful to a naval architect.
Therefore in the sequel we will not consider the
Ogilvie FSBC any more.

VL obtained 0.037(by Poisson) and 0.46(by
Dawson), respectively, as the amplitude of
waves far downstream(Ap) produced by a circu~
lar cylinder moving with FF%J being 0.4, and
whose submerged depth{h) is 1.0 where g is the
gravitational acceleration, and L the body
length used for nondimensionalizing all lengths.
One clear point which they did not catch then is
as pointed out by Banner & Phillips[11], that
there exists an upper bound for the surface ele~
vation( 1) of the steady flow given by

F?
<
n<—- (1)

which can be easily shown from the dynamic
FSBC, namely the Bernoullis equation. Thus
for F = 0.4, the surface elevation cannot be
greater than 0.08, and we see that the Dawson
FSBC not only overpredicts the surface eleva-
tion but also violates the basic principle de-
manded by the Bernoullis equation. With this
upper bound in mind, when we looked at the
linear results given in other past publications,
we found out many of them violating Eq.(1).
The reason for this violation is the neglect of the
second order terms in perturbation velocity from
the dynamic FSBC, and hence in the region
where the perturbation velocity is not so small
those linear theories cannot observe the upper
bound given by Eq.(1).For example, for a sub~
merged circular cylinder Ap is given by(see e.g.
Lamb[12])

h
Ap=nF2F (2)

Accordingly, in order to satisfy Eq.(1), h must
be larger than the critical depth(h,) given by
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hg = F?(~4InF +In2n), 3

We note that the maximum of h, is 1.846 1alt F
= 0.96 and that for F' greater than (27)= 1.
583 there is no such lower bound for h(see Fig.
1). Eq.(3) says that h must be larger than 0.
880 for F=0.4,and, in the case treated in VL
though this condition h ) h. is observed, the
Dawson model still does violate the condition
given by Eq.(1). A related question to this is
how an approximate model would behave when
his close to or smaller than h,. We will get back
to this point later again.
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Fig. 1 Critical depth h_ for a submerged circular cylin-
der as a function of F

VL also got 0.008(by Poisson). and 0.024(by
Dawson), respectively, as Ap for waves generat-
ed by the Salvesen's hydrofoil whose F=0.422
and h = 0.9174. In connection with this, it is
worth noting that Salvesen[5] demonstrated
that his second order theory gives much better
comparison with his experiments than the linear
one, which belongs to the same category as the
Poisson model. Furthermore, he also showed
that for very low speed (7%<°~5). the wave
elevation given by the second order theory is
several times that by the linear one in its value.
Though Ap by the Dawson is three times that
by the Poisson, it is only about half the experi-
mental value of Salvesen's. For the Salvesen's
hydrofoil, the Dawson FSBC is better than the
Poisson, but it is still smaller than the second
order result of Salvesen's as well as his experi-
mental one, as pointed out by Dawson{3] him-
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self.

Judging from all the observation made above,
it is highly desirable to have an exact(or almost
s0) theory as a reference to be able to tell which
BC is better in the low speed region as well as
whether we need a new BC on the FS or not.
Fortunately, for the problem we are interested,
Tulin{2] developed an exact theory, and so next
we briefly review his major findings.

3. Tulin's Theory(2]

The difficulty in getting an exact theory for
the surface wave problem is due to the fact that
the location of the FS is not known a priori,
even when the flow is assumed as irrotational.
However, this difficulty disappears if one works
on the complex velocity potential plane, that is
the ®-plane, where ®= @+ , instead of the
physical plane, which we call the z-plane, where
z=x+ly .On the ®-plane, ¢ =0 may be taken as
the free surface, which is known in advance and
a straight line indeed. Consequently, we need
only one BC on the FS, namely the dynamic one
given by

1, 2 1 _

2q +F y_z. on ¢ =0, 4)
where g and @ are the modulus and the argu-
ment of the complex velocity, respectively.
Differentiating Eq.(4) with respect to & once
and setting K=F2, we get

2
_1._‘?_Q_+K2y_=0,on¢ =0. (5)
2 d¢ d¢
Using % =q'sind ,sinf = —;(sin 36+ 4sin30),
Eq.(5) can be rewritten as
3 . .
dlng LK S0 36 Y e 39

—+4K—; =0.on¢ =0,
a¢ q q 6)

or equivalently
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1(dG .
=18 _ =0.on¢ =0,
Re{ G{dcb tK+KT}:| 0. on o

where Re stands for ‘the real part of , and
G=§,d¢ —g%% . Re(G'T)=4¢%in6, on ¢ =0.

When there is a submerged body, { } in Eq.(7)
is not regular everywhere in the lower half
plane, and we nust have

dG .
E{E—IK-FKT} —lK+Q(<D),fOT¢ <0,
(8)
where Q(®)=iQ;(¢) on ¢ =0. We note that Q

represents the effect of the submerged body. So
far, what we have done is deriving a differential
equation satisfied in the lower half plane ¢ < 0,
from the dynamic BC on ¢ =0. In doing so the
wave generation resulting from a submerged
body is also taken into account.

Setting G=1+H, where H is due to the per-
turbation velocity, we get a first order ordinary
differential equation for H as

3_H_+(K QH=Q-KT. for¢ <0,

o 9)

from which we obtain a solution on ¢ =0 as

L[ —\ 1%

H(o)= | [1Q(¢)-KT($)]e XSO

(10)
Nonlinearity of the problem is now shown up by
the terms 7T and Q. Since @ is also present on
the left-hand side of Eq.(9) as a part of the co-
efficient of H, it seems to affect also the phase
of the resulting wave system strongly. Further-
more, as Tulin pointed out, we may regard that
Q@=0(¢) and T = 0(33 . where gis a small
parameter, thus neglecting T in Eq.(10) leads to
a second order theory. Now, in Eq.(10), question
is how to relegate @; with a real submerged
body. Tulin provides a way to do this by intro-
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ducing the concept of surrogate body., and he
gave

_ d_e_ _ cos36 T
Q(9)= 6d¢ 2K[1 Py ]+2KIm(G)

on ¢ =0. (11)

where Im means ‘the imaginary part of ,
qe’® = 4%, and ®, is the complex velocity po-
tential for the flow around the surrogate body.
This body corresponds to the slit in the ®-plane
located at ( ¢, -h ) where ¢ e[0,1]. We know
from the theory of analytic function (see e.g.
Tulin (13]) that

T (@)= ln(qse“ies ) = Tlt _—(TF—L—)d "

where 0, is the angle between the x-axis and
the tangent of the upper surface of the body in
the z-plane. Here, we assume that a submerged
body is symmetric with respect to its own longi-
tudinal axis. In principle, given a geometry of
the body, now we are able to construct qs and
6 by Eq.(12), and in turn obtain @ and H( ¢)
from Eq.(11) and Eq.(10), respectively. Once
H (¢ )is known, we get back to the physical
plane by the transformation

z=| —— —-dq> on ¢ =0,
I(1+H) -l (13)

which gives the equation for the surface eleva-
tion.

4. Computational Results by Tulin (2]

Since it is rather cumbersome to compute
6,(9) for the Salvesen’ s hydrofoil, here we take
a simple shaped body, i.e., a symmetric body
whose 8, is given by
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— a5l o 1)
0, =~4{¢-5]. (14

where 8 is the maximum thickness of the body
1 ., . . .

at ¢ == For small & . a rough estimate of the

body shape in the z-plane may be given by

2
y::{—Zé(x—%) +g}—h, a5

which may include an error of 0(62).:111(1 + (=)
corresponds to the upper{lower) surface of the
body. Then using Eq.(12). we can obtain
Qy. B casily. However, in order to got Q) exact-
ly. we need to go through an iteration procedure
because of the last term including T in 1q.(11).
As mentioned before, T is of O(83). and as a
first. approximation. we neglect this term along
with the second term of { ] in Eq.(10). which al-
so includes the function T. Formally, then this is
a sccond order theory, but as vindicated by
Tulin [2] it is notable that this approximate
theory gives the included angle at the crest of a
limiting wave 120 as in the exact theory, Thus
neglecting the effect of T. we have a very s
traightforward procedure, and in Fig.2, for
K=6.25. 0=02 h=10, we show @(¢)  and
(1(4)) defined as

¢ A\ A
o0)=]" Q(6)dé . (16)
with which Eq.(10) can be rewritten as
. [ AN gt
H(¢) = jo I Ke-wipl J. Qi(d’)el |I\4)-uup'|d¢’ (17

This form is preferred because of its handiness
in numerical coding. v

We show the surface elevation in Fig. 3. for
F=0.3,04. 0.5, when 6 =0.2, h=0.8. We ob-
serve that as I° increases, relatively speaking
more encrgy s given to the free wave than to
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Fig.2 a) Q; ($)andb)a ( § ), for K=6.25, & =02
h=1.0, and the body shape is given by Eq. (14)

the local wave, and that the fivst hollow and the
first hump immediately following the distur-
bance is the biggest in its magnitude.

To see the behaviour of the solution for the
strong disturbance for which the biggest cleva-
tion is close to the upper bound given by Kq. (1),
in Fig. 4 we demonstrate the wave clevation for
6 =02, 023, 0.24, when =04, h=0.8. As
the disturbance gets thicker, ie. stronger. the
modulation of wave amplitude becomes moye
conspicuous. We note that the first hump just
behind the body is near the upper bound(
=0.08) given by [iq.t17. In this regard. we also
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Fig. 3 Surface elevations obtained by using the Tulin[2] " s

theory, for three F' s when 0 = 0.2, h=0., for the
body given by Eq.(14)
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theory, for three 8 s when F=0.4, h=0.6, for
the body given by Eq.(14)
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note that one of the Salvesen(5]s concluding re-
marks was that if the submergence is smaller
than three times the thickness of the body the
perturbation theory should not be used for low
speeds due to the wave breaking. It is conjec-
tured that the amplitude modulation is related
to the overprediction of the surface elevation by
the approximate theory.

In Fig. 5 we present the surface elevation ob-
tained by using the Poisson and the Dawson
FSBC for the same case with 6 =0.24. The
Poisson model underpredicts, while the Dawson
mode] overpredicts and much of its elevation is
greater than the upper bound given by Eq.(1).
This trend of underestimate by the Poisson
model, and of overestimate by the Dawsom was
also observed in VL, and was described in the
discussion after the Eq.(3) too.

5. Newly Proposed FSBC

In VL, it was pointed out that the Dawson
FSBC is not based upon a perturbation theory,
and that rather it can be easily derived if we
look at it from the numerical point of view. Kim
[14] also noted that the Dawson FSBC is the
same as the first iteration of his iterative
scheme for solving the exact nonlinear FSBC.
Hence, it can be thought that purely numerical
approach may be the way how we derive a new
FSBC, which gives us reasonable results for the
cases treated in the previous chapters. To be
reasonable’ we demand two conditions. We re-
quire that the new FSBC give greater result for
the cases shown than the Poisson model, and
that it observe the upper bound given by Eq.
{(1). The exact kinematic and the dynamic FS-
BC for two dimensional flows are

q)xn'—d)y=0. on y=T\(x), (18)

F2
=_é_(1_¢§_q>§). on ¥=1(x) (19)
respectively, and the combined form obtained by
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Fig. 5 Surface elevations obtained by using the Poisson
and the Dawson FSBC, for the body given by
Eq.(14) when F=0.4, ¢ =0.24, h=0.6

eliminating 7 is

2 2 =
.0, +20,0,0,, +P,?,, +Ko =0,

Yy Yy
on y=m1(x). (20
Here,n’%;l , and the subscripts % ¥ represent

the partial derivatives. Decomposing the total
velocity potential & as follows,

D(x,y)=x+¢(x,y), (21)
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where  ¢(xy)is the perturbed velocity potential,
then substituting this into Eq (20), we get

(14 9,) 0w +2(146,)0,0,, + 820, + Ko, =0,
on y=nx) . (22)

Now, neglecting the third order terms, we ob-
tain

(1+ 2¢x)¢xx +(K +2¢xy)¢y =0, on y=pyx)
(23)

Transferring the surface y =n(x) to y =0,
we need consider the Taylor expansion of the
leading order terms only, and in the expansion 7
can be replaced by —F 2¢x. However, when this
was done, the computational result did not look
promising. so we decided to neglect this effect
due to the transfer of the surface on which the
BC is applied. This point may require further s-
tudy. Since Eq.(23) is still nonlinear? it is need-
ed to somehow linearize it unless-we want to
solve a nonlinear equation numerically. Employ-
ing the concept of predictor-corrector method,
we approximate @, and @ in ( ) of Eq.(23)
by the corresponding linear solutions given by
the Poisson model, and apply the resulting e-
quation on the surface y = O . Consequently, we
have

(1+2(Z)x)¢xx +(K+2(Z)xy)¢y =0, 0on y=0,
(24)

where now ¢ is the velocity potential for the
Poisson model. Eq.(24) can be rewritten for the
numerical coding as

(1+2d)u, +(K+20,)v=0.0n y=0Q

(25)

where V¢ = (z,v) and Vé = (ﬁ’ﬁ) . Once u(x)
on the surface y=0 is known, the free surface
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elevation can be obtained from

n=-Fu, on y=0. (26)

Eq.s(25.26) will be denoted as the NP FSBC
hereafter. It is very simple to implement Eq.
(25) in a panel code. once one has the solution
for the Poisson model, since one can make use
of the influence coefficients already prepared for
the Poisson solver, and because the only differ-
ence is the coefficient, of u, and v in the FSBC.

Using the so developed panel code for the
body used for the Tulin s theory, extensive com-
putations were carried out. As a sample result,
we show in Fig. 6 the surface elevations for F' =
04, §=0.2,h = 0.8, predicted by the Pois-
son, by the Dawson and by the NP FSBC. Com~
paring these with the Tulin's result given in
Fig. 3. we see a surprisingly good improvements
of the prediction by the NP model over other
linear theories. We note that the solution by the
NP model satisfies the two conditions required
at the beginning of this chapter.

We also computed the surface wave generated
by the Salvesen s hydrofoil, when F=0.422 ,
h=0.9174 , and the results predicted by the
Poisson, by the Dawson, and by the NP model
along with the Salvesen s measurements are
shown in Fig. 7. We note that the maximum of
the surface elevation measured by Salvesen is
close to the upper bound, 0.089 for F = 0.422 ,
given by Eq.(1). For such strong disturbance
none of the models tested gives a satisfactory
result. But the change of the NP model is in the
right direction i.e., closest to the experimental
result among the tested.

6. Conclusions

In this work first we sorted out the unre-
solved findings of Van & Lee[1] by noting that
there is an upper bound for the surface eleva-
tion produced by a moving submerged body.
Then, with the help of the Tulin' s[2] theory, we
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Poisson FSBC
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Fig. 6 Surface elevations obtained by using the Poisson,
the Dawson and the new([Eq. (25)] FSBC, for the
body given by Eq.(14) when F= 04,0 =02,
h=0.8

made it certain that the Poisson model under-
predicts, and that the Dawson overpredicts the
surface waves generated by a submerged body
moving with low speed (F<0.5). Dawson model
has another problem in that it gives bigger sur-
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Fig. 7 Surface elevations obtained by using a) the new
[Eq. (25)) FSBC,b) the Poisson, the Dawson FS-
BC, and the Salvesen's measurement, for the
Salvesen[5]'s foil when F= 0.422, 8 = 0.343 ,
h=0.9174

face elevations than the upper bound required
by the Bernuolli s equation for some cases. To
find a new FSBC without such deficiencies, we
tried to derive a FSBC purely in numerical way.
With some luck, the newly proposed BC, which
may be called an improved Poisson model,
showed a much better performance than other
linear theories. It should be emphasized that
one can try to derive a new FSBC, and to get
some results, but that without a sound theory,
like that of Tulin[2]s, it is very hard to judge
how good the new results are. Another point to
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stress is that there is still a good possibility for
anyone to show the existence of an even better-
working FSBC by, say, including higher order
terms and by introducing ingenious concepts for
solving it. Thus, one may say that there is
much yet to learn about the free surface wave
problems, and that it will be more and more so
due to the ever fast advancement of the high
speed computer and to our constant desire to
make best use of it.
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