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Abstract—Using 2 to 4 day-old postnatal rats, primary brain cell cultures were made from various brain regions
(substantia nigra, hippocampus, striatum, and nucleus accumbens). Whole-cell patch clamp technique was used
for electrophysiological studies. Neurons cultured from substantia nigra were characterized more in detail
to test whether these cultured neurons were appropriate for physiological studies. Immunocytochemical and
electrophysiological properties of these cultured neurons agreed with those from other in vivo or in vitro
studies suggesting that cultured neurons maintained normal cytological and physiclogical conditions. Modulation
of ionic channels through dopamine receptors were studied from brain areas where dopamine plays important
roles on brain functions. When neurons were clamped near resting membrane potential (—74 mV), R(+)-SKF
38393, a specific Dy receptor agonist, activated cultured striatal neurons, and dopamine itself produced biphasic
responses. Responses of cultured hippocampal neurons to dopamine agonists were kinds of mirror images
to those from striatal neurons; Dy receptor agonists inhibited hippocampal neurons but quinpirole, a D, receptor
agonist, activated them. Neurons cultured from nucleus accumbens were inhibited by dopamine.
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So far, most of in vitro electrophysiological studies
of the vertebrate brain have been conducted using
brain slice preparation. However, in slice preparations,
it is difficult to investigate the authentic functions of
specific receptors and ion channels because neurons
have complicate synaptic connections with adjacent
neurons. Furthermore, slice preparations are not ade-
quate to apply patch clamp technique, one of the most
salient progresses in recent electrophysiology (Hamil
et al., 1981),

With these reasons, many investigators have been
interested in the development of neuronal culturing
techniques. The application of this technique vet has
been limited because of the difficulties of culturing
from postnatal animals, and cultured brain cells used
by other researchers have mostly been derived from
the embryonic brain (Chiodo and Kapatos, 1987; Di
porzio et al., 1987). In embryonic brain, however, brain
structures are not formed yet, and cultures were usua-
lly obtained from unspecified brain regions. In addi-
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tion, experimental results could be misinterpreted be-
cause the signal transduction components have not
been completed.

We have reported the establishment of special tech-
nique of making primary brain cell cultures from iden-
tified brain nuclei (substantia nigra and hippocampus)
of the postnatal animals (Kim et al., 1990; Brown ef
al., 1993). In this study, culturing technique was expa-
nded to other brain regions, ventral striatum and nuc-
leus accumbens, and patch clamp technique was app-
lied on cultured neurons to investigate physiological
roles of dopamine receptors. Brain areas in which we
were interested were substantia nigra, the ventral st-
riatum, hippocampus, and nucleus accumbens. Dopami-
nergic nervous systems in these brain regions are
known to be involved in the etiology of motor and
mental diseases such as Parkinsonism, schizophrenia,
and drug abuse (Hornykiewicz, 1963; Snyder, 1973;
Stevens, 1979; Defrance, 1985; Wise, 1987). In this pa-
per, effects of dopamine agonists on cultured neurons
from those brain regions are discussed in aspects of
their physiological importance in brain functions.
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Materials and Methods

Cell Culture

Using 2 to 4 day-old postnatal Long Evans rats, pri-
mary neuronal cultures were made from several brain
regions (substantia nigra pars compacta and pars reti-
culata, ventral striatum, CAl and CA3 regions of hip-
pocampus, and nucleus accumbens). Briefly, brains
were removed and immersed into the osmotically ba-
lanced solution (130 mM NaCl; 45 mM KCl; 2 mM
CaCly; 33 mM D-glucose; and 5 mM PIPES buffer, pH
74). After making slices (400 yum thick) with a vibratome
(Lancer 1000), tissue fragments containing specific
brain nuclei were dissected out. Brain tissues were
incubated for 30 min in a papain solution (12 units/mi),
and then were dissociated with a pasteur pipette in
a culture medium.

Before plating neuronal cells, the bottom of the mo-
dified dish was coated with collagen and a feeder layer
consisting of non-neuronal cells. To suppress overgro-
wth of non-neuronal cells, the feeder layer was treated
with antimitotic agents, 5'-fluoro-2'-deoxyuridine (15
mg/ml) and uridine (35 mg/mi). Cultures were kept
at 37C with saturated humidity, in an atmosphere of
10% CO; and 90% air.

Electrophysiology

The whole-cell patch clamp technique was employed
for electrophysiological studies. A patch clamp ampli-
fier (List EPC7) was used for the voltage clamp expe-
riments. The standard internal solution contained 120
mM K-aspartate, 40 mM NaCl, 5mM HEPES/KOH
buffer, 0.5 mM EGTA/KOH, 025mM CaCl,, 2mM
MgCl;, 2mM Na,ATP and 100 M Na,GTP, 5~6 mM
KOH, pH 7.2. Throughout the experiment, cells were
superfused with an oxygenated krebs solution contai-
ning 146 mM NaCl, 5 mM KC], 24 mM CaCl,, 1.3 mM
MgCl,, 5 mM HEPES/NaOH buffer, 11 mM D-glucose,
and 0.5 to 1 uM tetrodotoxin (Calbiochem., La Jolla, CA).
The cells were clamped at —74 mV and experimental
temperature was maintained around 31T.

Dopamine (Sigma), SKF38393 (RBI, Natrich, MA),
and quinpirole (RBI) were used as dopamine agonists.
Drugs were applied by pressure ejection from glass
pipettes (tip diameter is about 7 gm) located around
40 to 50 ym from the soma. To prevent oxidation, do-
pamine was prepared daily by dissolving it in solution
containing /-ascorbic acid, and then gassing it with nit-
rogen.

Reproducible responses were obtained from neurons
cultured longer than 2 weeks, and electrophysiological
studies on dopamine and GABA receptors were usually

conducted on neurons cultured between 3 to 4 weeks.
Immunocytochemistry

Indirect fluorescence immunocytochemical method
was used. Cultures were fixed with 4% paraformaldeh-
yde and 0.1% glutaraldehyde in 0.12 M phosphate buf-
fer (pH 7.4) for 2 hours at 4C. After washing with
PBS, cultures were freeze-thawed, then treated with
1M ethanolamine (sigma) for 1 hour at room tempera-
ture. To decrease background noise, cultures were in-
cubated in 10% normal goat serum (Organon_Teknika
Corp., West Chester, PA) for 30 minutes at room tem-
perature. Cultures were double labelled with a mouse
monoclonal antibody to tyrosine hydroxylase and rabbit
antiserum to GABA (INCSTAR, Stillwater, Minnesota)
by incubating cultures for 2 to 3 hours at room tempe-
rature. After washing cultures overnight with PBS,
they were incubated with secondary antibodies for 2
to 3 hours at room temperature. Goat rhodamine-labe-
lled anti-mouse IgG (Kirkegaard and Perry Laborato-
ries, Inc.,, Gaithersburg, MD; Organon Terknika Cortp.)
and goat fluorescein-labelled antirabbit IgG (Kirke-
gaard and Perry Laboratories, Inc.) were used as se-
condary antibodies for TH and GABA antibodies, respec-
tively,

Results and Discussion

Immunocytochemical and Electrophysiological Charac-
terization of Cultured Substantia Nigra Neurons

Substantia nigra is known to be composed of relati-
vely homogeneous neuronal populations, dopaminergic
neurons and GABAergic neurons (Parent ef al., 1983;
Karabelas and Moschovakis, 1985). With these reasons,
in this study, substantia nigra was selected for the
immunocytochemical characterization of cultured neu-
rons. Examples of dopaminergic and GABAergic neu-
rons are shown in Fig. 1 and Fig. 2. Usually dopamine-
rgic neurons possessed relatively thick three to four
processes, meanwhile thinner and more branched pro-
cesses were found from GABAergic neurons (Kim ef
al,, 1991; Masuko ef al., 1992).

GABA is one of the well established neurotransmit-
ters in the substantia nigra. Substantia nigra pars reti-
culata receives GABA inputs from the striatum (Gray-
biel and Ragsdale, 1979) and in turn it sends out
GABA outputs to the ventromedial thalamic nucleus
(Uno et al., 1978). Effects of GABA agonists on cultured
substantia nigra neurons are shown in Fig. 3. The cell
was clamped at —74 mV and a square-wave depolari-
zing pulse (20 mV, 100 ms) followed by a 100 ms pause
and a hyperpolarizing pulses (50 mV, 100 ms) were ap-
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Fig. 1. A typical dopaminergic neuron cultured from the substantia nigra pars compacta.
A substantia nigra pars compacta neuron cultured for 20 days was used. Cultures were fixed and were labelled with antibodies
against tyrosine hydroxylase and GABA. Three photographs were taken from the same place. The photograph shown on the
left-hand side was taken with phase contrast, the middle photograph shows immunoreactivity to tyrosine hydroxylase (dopamine-
rgic neuron if it is positive), and the photograph on the right-hand side shows immunoreactivity to GABA.
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Fig. 2. A typical GABAergic neuron cultured from the substantia nigra pars reticulata,
A substantia nigra pars reticulata neuron cultured for 21 days was used. Small intense spots on the periphery of the soma

or on the processes probably represent synaptic buttons from adjacent neurons,

plied every 3 second to monitor the membrane condu- mbrane conductance. Upward shift of membrane hol-
ctance changes. Vertical lines show current pulses evo- ding current means that an outward current (hyperpo-
ked by applied voltage commands, and changes in the larization in current-clamp mode) is induced, that is,

magnitude of current pulses represent changes in me- inhibition of neuronal activity.
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Fig. 3. Effects of GABA agonists on a cultured neuron from
the substantia nigra.

Under the experimental conditions employed here, the reve-
rsal potentials for chloride and potassium ions were —33 mV
and —84mV, respectively. From the holding potential of
—~74 mV, depolarizing pulses (20 mV, 100 ms) followed by an
interval (0mV, 100ms), and then hyperpolarizing pulses (—50
mV, 100 ms) were applied to the cell every 3 sec to monitor
the membrane conductance changes. The concentrations of
GABA and baclofen were 10 M and 5 uM, respectively.

Baclofen, a GABAjp agonist, produced an increase
in the membrane conductance concomitant with an ou-
tward current, suggesting that GABAs receptors are
coupled to the potassium channels. GABA producea
an inward current probably by increasing the chloride
channel conductance through GABA, receptors. GA-
BAB receptors also should have been activated by
GABA but their actions were probably overshadowed
by huge chloride current.

Immunocytochemical and electrophysiological prope-
rties of cultured neurons from the substantia nigra
agreed with those from other in vive or in vitro stu-
dies. These results suggested that cultured neurons
maintained normal cytological and physiological com-
ponents.

D; Agonist Activates and D, Agonist Inhibits Cultured
Striatal Neurons

Modulation of ionic channels through D; receptors
has been extensively studied from various prepara-
tions. D, agonists increase potassium channel conduc-
tance in prolactinoma cells, lactotrophs, and substantia
nigra neurons (Israel ef al., 1985; Gregerson ef al.,
1989; Lacey et al., 1987). Specifically, inward rectifying
potassium channels (Kim et al., 1990) and pertussis
toxin-sensitive G protein are involved in this process
(Innis and Aghajanian, 1987; Kim ef al., 1990). On the
other hand, electrophysiological roles of Dy receptors
are not well established as those of D receptors. It
was reported that potassium channel conductance was
decreased through D, receptors in the substantia nigra
pars reticulata neurons (Kim et al., 1990). Also voltage-
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Fig. 4. Effects of dopamine agonists on cultured striatal
neurons.

Striatal neurons cultured about 4 weeks were used. The ex-
perimental conditions were the same as those in Fig. 3. The
concentrations of dopamine and SKF38393 were 10 uM and
20 uM, respectively, '

gated calcium channels were reported to be activated
through Dy receptors (Artalejo et al., 1990).

Effects of dopamine agonists on striatal neurons are
not clear. Only few ambiguous reports are available
yet (Akaike et al., 1987; Calabresi et al., 1987). Interes-
tingly, in the striatum, connections with input and out-
put structures, distribution of dopamine receptors and
certain enzymes, and morphological appearances are
known to be compartment-specific (for review, see
Graybiel, 1990). This compartment-specific distribution
of dopamine receptors might provide a partial explana-
tion for the uncertainty of functional roles of dopamine
receptors in the striatum.

In this study, Dy and D; receptors seem to be loca-
ted on the same striatal neuron exerting opposite res-
ponses. D, agonist activated striatal neurons (Fig. 4A2,
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Fig. 5. Effects of dopamine agonists on cultured hippocampal neurons.

Hippocampal neurons (CAl and CA3), cultured 30 days, were used. Tissue fragments from CAl and CA3 were mixed together
and plated on modified petri dish. Experimental conditions were the same as those in Fig. 3. Concentrations of dopamine
agonists used were as follows: dopamine, 10 uM; SKF38393, 20 zM; quinpirole, 1 uM.

inward currents were induced) but dopamine itself
produced biphasic responses (Fig.4A1). Therefore,
even though observed from different striatal neurons,
these results suggested that D; agonist activated stria-
tal neurons by eliciting an inward current and D, ago-
nists inhibited them. Neither specific D; agonist nor
dopamine affected the membrane conductance signifi-
cantly but they shifted holding currents, probably be-
cause potassium channels were not involved in these
processes or more than one ionic channels were affec-
ted by dopamine agonists.
Effects of Dopamine Agonists on Hippocampal Neu-
rons are Mirror Images to Those on Striatal Neu-
rons

Effects of dopamine agonists on neurons cultured
from CA1/CA3 regions of hippocampus were opposite
to those from striatum (Fig.5). D; agonist inhibited
but D; agonist activated them (Fig. 5B). Dopamine pro-
duced an outward current in some neurons (Fig. 5A1)
or an inward current from others (Fig. 5A2) suggesting
that only single population of dopamine receptors are

localized on these hippocampal neuron. However, in
some neurons, dopamine produced a biphasic respo-
nse, an outward current was proceeded and an inward
current was followed (3 neurons, not shown). In accor-
dance with these results, both D; and D: receptors
were found to be located on the identical hippocampal
neuron exerting opposite responses (Fig. 5B).

Some extracellular studies have been reported for
the effects of dopamine agonists on hippocampal neu-
rons. Smilowski and Bijak (1987) reported that D; ago-
nists decreased and D, agonists increased the freque-
ncy of spikes from hippocampal neurons. In present
study, effects of dopamine agonists on neural activity
were in the same direction as theirs, and ionic mecha-
nisms were also elucidated. As in the striatal neurons,
significant changes in membrane conductances were
not observed but holding currents.

Dopamine Inhibits Nuclens Accumbens Neurons

Nucleus accumbens is the central structure of the
limbic system, and it is known to be important for
the etiology of schizophrenia (Matthysse, 1981; Defra-
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Fig. 6. Effects of dopamine on a nucleus accumbens neuron.
A nucleus accumbens neuron cultured for 4 weeks was used.
Voltage pulses were omitted in order to precisely observe
the effects of agonists on membrane currents. The concent-
ration of dopmine was 10 uM

nce el al., 1985). Nucleus accumbens receives dopami-
nergic inputs from other brain regions (Anden ef al.,
1966).

Neurons cultured from the nucleus accumbens,
around 18 um in diameter, were smaller in size than
neurons from other brain regions (in case of hippoca-
mpus and substantia nigra neurons, around 25 ym in
diameter), and it was not easy to make giga-ohm seal
for those neurons. Because membrane currents are
proportional to the surface area, responses to neurot-
ransmitters were also small in these neurons.

When dopamine was applied to five neurens cultu-
red from the nucleus accumbens, four of them produ-
ced an outward current (Fig. 6), suggesting that dopa-
mine inhibited nucleus accumbens neurons. In this
study, any specific dopamine agonist was not tried on
these neurons. According to Ulchimura et al. (1986),
this inhibitory response is mediated through D; recep-
tors. Using slice preparations they reported that D,
agonists inhibited nucleus accumbens neurons and
cAMP was involved as a second messenger.
Primary Brain Cell Culturing Techniques and Effects
of Dopamine Agonists on Various Brain Regions

Cultured brain neurons were useful for studying
brain functions. Because of the clean surface of the
cultured neurons, it was easy to apply patch clamp
technique for electrophysiological studies. Membrane
currents were recorded more accurately than conven-
tional microelectrode method. Cultured brain cells
were useful for cytological studies also. By virtue of
cultured brain cells, immunocytochemical studies were
conducted at the subcellular level. Information about
neuronal cells, such as morphology, synaptic connec-
tions, and distribution of cellular components were
provided more in detail.

Different actions of specific dopamine agonists on
neurons cultured from different brain regions probably
came from the heterogeneity of dopamine receptor su-

btypes or cellular signaling components. Distinct in
molecular level but pharmacologically similar dopamine
receptors might have been activated by pharmacologi-
cally specific dopamine agonists. Also various signal
transduction pathways could be involved in the modu-
lation of brain neurons through dopamine receptors,
depending on the origin of neurons cuitured from.
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