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Analytical Comparison of Time-Dependent Mild-Slope Equations
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Abstract . ' We analyze existing . ..-dependent mild-slope equations, which were developed by Smith
and Sprinks (1975) (or, cquivalently. Radder and Dingemans (1985)) and Kubo er al (1992). in terms
of the dispersion relation and energy transport. One-dimensionally in the horizontal direction, we
compare the modulation " wave amplitudes for the time-dependent mild-slope equations against
the linear Schrow i nger equawon. In view of the dispersion relation and modulation of wave amplitu-
des. Smith and Sprinks’ model is more accurate in shallower water (kh<02r) and satisfies the lincar
Schrédinger equation in very shallow water (k2= 0), while Kubo er al’s model is more accurate
in decper water (kh>0.2m) and satisfies the linear Schrodinger equation at a point of intermediate
water depth (kh~ 0.3m). In view of the energy transport. Kubo ¢f al's model is more accurate but
vields singular solutions at some higher frequency range.
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1. INTRODU: . iUN

The time-dependent mild-slope equations arc wi-
dely applicable from deep to shallow waters to both
monochromatic and random waves. Also. the model
cquations treat the combined effects of refraction.
diffraction, and reflection. So. the time-dependent
mild-slope cquations are quite useful tools for coas-
tal engincers who want to predict the wave climate
of the whole range of waters.

Combined refraction and diffraction was first stu-
died by Ludwig (1966) in order to provide locally
valid solutions for the Helmholtz equation near a
caustic. The solution uses Airy functions, which are
sinusoidal in the illuminated zone, damp exponen-
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tially in the shadow zone, and are transitional bet-
ween sinusoidal and exponentially damping beha-
vior in thc vicinity of the caustic, with values of
nearly double the incident wave on the caustic itself.

The combined refraction and diffraction of water
waves on a slowly varying bottom was studied by
Berkhoff (1972), who derived the mild-slope equa-
tion:

V-(CC, V) +hCC =0 (1)

where V is the horizontal gradient operator, k is
the local wavenumber, C and C, are phase and
group velocitics, respectively, and the function ¢ is
related to the velocity potential ¢ by
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Berkhoff's equation (1) is applicable only to mono-
chromatic waves and is of elliptic type, and hence
it requires the surrounding boundary conditions
and significant work has been done on efficient
solution methods.

A time-dependent mild-slope equation was first
developed by Smith and Sprinks (1975) by means
of Green’s second identities applied to the velocity
potential. The model equation is

‘;‘f —V-(CC,V8)+ (@~ FCC)5=0 3)

where C and C, are phase and group velocities,

respectively, of a narrow-banded wave with carrier

angular frequency  and wavenumber k. The func-

tion ¢ is related to the velocity potential ¢ by
_ coshk(z+h) ~

O coshkr @)
The time-dependent mild-slope equation (3) repro-
duces Berkhoff's equation (1) for monochromatic
waves and reproduces the long wave equation in
shallow water.

A system of the time-dependent mild-slope equa-
tions was derived based on the Hamiltonian theory
of water waves by Radder and Dingemans (1985).
The model equations are

M __ o (CC, (@—kCC) ~
Gh=-v (—g v¢)+——¢ )
0 _ _

o an (6)

where g is the gravitational acceleration. The water
surface elevation m may be eliminated from equa-
tions (5) and (6) in order to obtain Smith and Spri-
nks’™ equation (3).

The time-dependent mild-slope equation was ex-
tended by Booij (1981) to include the effects of am-
bient currents using a variational principle. Some
errors were corrected by Kirby (1984) to obtain the
model equation

Y > o~ — ———— o~
7 (v PR v + - RTCT o)

where the total derivative D/Dr is

D ( 0

— =% +U-V>. 8
Dr or ®
U(x, y) is the ambient current and o is the wave
intrinsic frequency which satisfies the dispersion re-

lation
*=(w—k-Uy=gktanh kh. )

Kirby er al. (1992) presented a number of compu-
tations using the time-dependent mild-slope equa-
tions (5} and (6). They studied the propagation of
wave groups in order to verify the linear dispersive
properties of the model, and then tested the model
against several existing data sets, including the wave
focusing experiments by Berkhoff er al. (1982) (mo-
nochromatic waves) and Vincent and Briggs (1989)
(monochromatic and random waves). They exten-
ded those time-dependent mild-slope equations to
treat progressive nonlinear Stokes waves.

At the same time, Kubo e al. (1992) have develo-
ped a different type of time-dependent mild-slope
equation

0 —=
L V——
% (CC) o

Y R
+ 4 =
i %0 (k°CC) p 0 (10)

V-(CC,V)+kCCH+ N-( 00 )

where the function  is related to the velocity pote-
ntial ¢ by

o= coshk(z+h) de (a1

coshkh

The time-dependent mild-slope equation (10) was
derived by extending the terms CC, and k*CC, in
Berkhoff's equation (1) into Taylor series in Aw,
and eliminating powers of Aw using the relation
00/0t=~iAwd for narrow-banded spectra. They
also showed the propagation of the wave groups
to verify the linear dispersive properties of the mo-
del equation. The last two terms in equation (10)
are added in order to correct Berkhoff's equation
(1) for time-dependent problems. The values of the
terms o(CC,)/gw and AK°CC,)/pw are given by

0 . w/C ko” ®
— === -1+ ——= == —
(CC,) k1< C 1 C ) B 2 -1
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(13)
where n=C,/C=(1+2kh/sinh2kh)/2.

The values of k*/w §(CC,)ow and 1/w a(k*CC,) 9w
are shown in Figure 1, from which we see that
the second to last term in equation (10) becomes
asymptotically zero in very shallow water and the
last term becomes asymptotically +iw(gd/gf) and
+2iw(gd/gt) in very deep and shallow waters, respe-
ctively.

First, we compare the two models (3) (or, equiva-
lently, (5) and (6)) and (10) from a geometric optics
point of view, which yields the dispersion relation
and the transport equation for wave energy. Second,
we compare the two models one-dimensionally in
the horizontal direction for tonstant water depth
against the linear Schrodinger equation, which is
the equation for modulation of wave amplitudes
accurate to O(AkY and serves as a benchmark for

other leading order envelope cquations.

2. COMPARISON OF MODEL
EQUATIONS BY ‘EOMETRIC
OPTICS AP} OACH

For the case where variations in the wave train
and the domain topography are slow relative to the
wavelength, the propagation of surface waves is of-
ten treated from the geometric optics point of view,
which leads to the usual ray approximation.

For Smith and Sprinks’ model, the geometric op-
tics approximation is constructed by substituting the
ansatz

E)'( X, t) =4 (x,y. e ik ydx -+ lydy- (14)

where A(xy.t) is a complex amplitude which modu-
lates in space and time and k, and k, are the local
wavenumbers in x and y directions, into equation
(3). which yields

— (@ — @) A+ (k—k})CC,A—V(CCVA)
1 .
—z’;V-(AszCg)ZO. (15)
Separation of real and imaginary parts of the resul-

ting equation leads to an eikonal equation for the
phase function

o' - V-(CC,VA)

==k k= 16

cc, . CC,A (16)
and a transport equation for wave energy

V- (A’kCC,)=0. an

It is usually assumed that for bottom of small slo-
pes, the last term in equation (16) is second order
in the small parameter and thus negligibly small
(Keller, 1958). Retention of the small term allows
for the inclusion of weak diffraction corrections in
grid-based refraction schemes. Neglecting terms that
are second-order small in equation (16) leads to
the following dispersion relation

R

k
== +——_Q
==V : (18)

For Kubo e al’s model, the geometric optics ap-
proximation is constructed by substituting the an-
satz

PLey.1)= 0= Al prjehat el 1o on (19)

into equation (10). which yields
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Fig. 2. Exact linear dispersion relations.
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Separation of the real and imaginary parts of the
resulting equation leads to an eikonal equation for
the phase function

00§ § ~e—. . ——

—y— (k“C —K—

= { 2 @weT)-kL: (T}
. V(CCYA)
=kt -

CCA
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and a transport equation for wave energy
v- [AZk{c—cg—(m—B)—a% (CCoi1=0. 22)

The last two terms in equation (21) represent weak
diffraction with additional correcting term obtained
by Taylor series expansion. Neglecting terms of diff-
raction in equation (21) leads to the following dis-

k 2<£~1>
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persion relation

sc dispersion relations, equations (18) and
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Fig. 3. Percent errors in &/k for Smith and Sprinks’ model.
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Fig. 4. Percent errors in k/& for Kubo e al’s model.

(23), can be compared against the exact dispersion
relation for linear wave:

®\> k tanhkh
<§) %k tanhkh 24

The exact dispersion relation is shown in Figure
2. The percent errors in k/k for Smith and Sprinks’
model and Kubo er al's model are shown in Figu-
res 3 and 4, which show that Kubo e al’s model
gives closer dispersion relation to the exact disper-
sion relation in deep and intermediate-depth waters,
whereas Smith and Sprinks” model gives closer dis-
persion relation in shallow water. Figures 5-7 show
the dispersion relations for exact solution, Smith
and Sprinks’ model. Kubo er al’s model, and the
linear Schrodinger equation in deep water (kh=2m),
intermediate-depth in water (kA =03n), and in shal-
low water (k=005 n). The dispersion relation for
the linear Schrodinger equation is described by
cquation (34) which is accurate to O(Ak). At deep
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Fig. 5. Dispersion relations for kh=2n (dotted line: 2-per-
cent confidence interval of exact solution, dashed
line: Smith and Sprinks’ model, dash-dotted line:
Kubo et al’s model, solid line: lincar Schrodinger
equation).

water with kA=2n, Smith and Sprinks’ model has
lower valid boundary of w/w=0.7 and Kubo et als
model has lower valid boundary of w/w=05. At
intermediate-depth water with k2=03n, Smith and
Sprinks’ model has lower valid boundary of w/w=
045 and Kubo er al’s model has lower valid boun-
dary of w/w=0.35. At shallow water with kh=0.05n,
Smith and Sprinks” mode has lower valid boundary
of w/w=0.1 and Kubo et al’s model has lower valid
boundary of w/w=035. The higher ranges of w/w
for valid sclutions for both Smith and Sprinks’ mo-
del and Kubo er al’s model are much larger than
the lower ranges of w/w for valid solutions.

The transport cquations for wave energy can be
compared against the transport equation for the li-
near wave energy:

V-(AKCC,)=0. (25)

The exact linear shoaling coefficient can be obtai-
ned from cquation (25) as

K.= A :\/ﬁ (26)

Ao C,
where the subscript 0 denotes the reference point.
The linear shoaling coefficient for Smith and Spri-
nks’ model can be obtained from equation (17)

wfw

Fig. 6. Dispersion relations for kh=03n (dotted line: 2
percent confidence interval of exact solution, da-
shed line: Smith and Sprinks’ model. dash-dottcd
line: Kubo et al’s model. solid line: linear Schrodi-
nger equation).
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Fig. 7. Dispersion relations for kh=0.05n (dotted line: 2
percent confidence interval of exact solution, da-
shed line: Smith and Sprinks’ model, dash-dotted
line: Kubo e al’s model, solid line: linear Schrodi-
nger equation).

as
A (kCCyly
K= 1 ‘—kfé . 27)

g

The lincar shoaling coefficient for Kubo ef al’s mo-
del can be obtained from equation (22) as
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Fig. 9. Percent errors in shoaling coefficient for Smith
and Sprinks’ model (f=1 m, /=1 Hz).
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The linear shoaling coefficient for Kubo e al’s mo-
del is equal to the linear shoaling coefficient for
Smith and Sprinks’ model with additional correc-
ting terms obtained by Taylor series expanding the
terms CC, and (CCp.

The exact linear shoaling coefficients for reference
water depth #p)=1 m and frequencies from f=06
Hz to f=14 Hz are shown in Figure 8 where the
shoaling coefficient decreases and then increases as
water depth decreases. At lower frequencies, the tur-
ning starts deeper water than at higher frequencies,
and the maximum shoaling coefficient at water de-
pth #=0.01 m is 221 at the lowest frequency. Figu-
res 9 and 10 show the percent errors for Smith
and Sprinks’ model and Kubo ef al’s model, respe-
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Fig. 10. Percent errors in shoaling coefficient for Kubo
et al’s model (Ap=1 m, f=1 Hz).

Hz with khy=128n at hy=1 m and kh=006n at
h=1 cm. Smith and Sprinks’ model gives smaller
shoaling coefficients at lower frequencies and larger
shoaling coefficients at higher frequencies in all wa-
ter depths relative to the exact shoaling coefficients.
Kubo e al’s model gives smaller shoaling coefficie-
nts at both lower and higher frequencies in water
depth shallower than 04 m and gives singular solu-
tions of the shoaling coefficients at frequencies hi-
gher than f=14 Hz. The singularity happens when
the value of CC,+(w—@)(CCy)/ow becomes zero.
The value of a(ECg)/aw is 0 in shallow water and
—w/k? in deep water (see Figure 1), so the singula-
rity of the shoaling coefficients happens always at
higher frequencies. Overall, the shoaling coefficient
for Kubo er al’s model is more accurate than the
shoaling coefficient for Smith and Sprinks’ model,
but yields singular solutions at some higher freque-
ncy range.

3. COMPARISON OF MODEL EQUA-
TIONS IN VIEW OF MODULATION
OF WAVE AMPLITUDES

For constant water depth, the two models can
be compared against the linear Schrodinger equa-
tion, which is an equation for modulation of wave
amplitudes accurate to O(Ak)* and serves as a ben-
chmark for other leading order envelope equations.
We analyze the problems in one dimension horizo-
ntally, ie. in x direction which is assumed to be
the direction perpendicular to the wave crest. The
+elocity potential ¢ in Smith the Sprink= :quation
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(3) can be defined as
5(_x,t):Ad“‘d‘ wr) A(x't)el(]kdr wr) (29)

where A(x#). which modulates in space and time,
is the amplitude obtained by extracting the harmo-
nic terms with carrier wavenumber k and angular
frequency o from the velocity potential . We have
the following relations for the amplitude A:

A=At Bt o on (30)
% = —jl0—)4 (31
% =ik—k)A 32)
3?2 =—(k—k)4. (33)

The local angular frequency w(k) can be approxi-
mated by a few terms in the Taylor series expansion
to O(AkY:

(k—kY

w=oto'k—k)+o" (39
where the superscript prime means the derivative
with respect to the wavenumber. After multiplying
equation (34) by 4 and rearranging, we have

MZ (35)

{w—wd=Cdk—kd+ao"
where ' is rcplaécd by the group velocity C,. Then,
the lincar Schrodinger equation for modulation of
wave amplitudes 4 can be obtained using the rela-
tions (30)-(33):

=0. (36)

This linear Schrodinger equation (36) and the dis-
persion relation (34) for the linear Schrodinger
cquation will be used as a reference in comparing
the accuracy of the two time-dependent mild-slope
cquations.

Substituticn of cquation (29) into Smith and Sp-
rinks” cquation (3) gives the equation for modula-
tion of wave amplitudes A4:

0.5 T T

kh/®
. o k¥ C
Fig. 11. — PR solid line, — —f( C,): dash-
ed line, —_——k'{ —C_& “} dash-dotted
®
line.
_ i a4 :Z S
—m'm(ﬁ +cgﬁ)+ A il @
ot ox or
or
A —od i C — = g4
—— +C— —— == (C—-C
o Fax 2 w( g)axz 0 (38)

+C, =0. (39)
The velocity potential ¢ in Kubo er al’s equation
(10) can be defined as
St =ox 1) e =Aehds @ oN=f(x ) glhx (40)

Substitution of equation (40) into Kubo e al’s
equation (10) gives the equation for modulation of
wave amplitudes A:

s &+, ) e, 4
ot ox -
34 4
+i9 (CC) ‘314 +2ik: 04 }:0 a1
ow oxor oxot
or



396 Chang Hoon Lee and James T. Kirby

. /
2 /I‘
] ok
)
4 ,,,56',//'
52 %‘/I' ‘
e 255X
So
o
g-z
Y
i
05
~1 1
logo(kh/7) -15 o8

wlw

Fig. 12. Percent errors in k/k for linear Schrodinger equa-
tion.
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where we use relation (39) and neglect the term
smaller than O(Ak).

The comparison of equations (38) and (42) agai-
nst the linear Schrodinger equation (36) shows that
the wave envelope for both Smith and Sprinks’ mo-
del and Kubo et al’s model propagate correctly with
the group velocity C, in O(Ak), but none of the
models cannot predict the propagation of the wave
envelope in O(AY. Figure 11 shows the coefficients
of (§4/ax>) multiplied by k*/w in equations (36).
(38), and (42). Smith and Sprinks’ model satisfies
the linear Schrodinger equation in very shallow wa-
ter (kh=0), and the error becomes larger at inter-
mediate-depth water with largest error at kh=0.7n
after which the error becomes smaller in deeper
water and becomes constant in very deep water.
Kubo er al’s model satisfies the linear Schrodinger
equation at a point of intermediate depth (kh=0.3m)
and, from the point, the error increases in both
deeper water and shallower water with a positive
error in deeper water and a negative error in shal-
lower water. The maximum error occurs in very
shallow water for Kubo et al’s model. The coeffi-
cient of (§"4/gx?) for Smith and Sprinks’ model is
closer to the coefficient for the linear Schrodinger
equation at kh<0.2n than for Kubo er al’s model.

The coefficient of (§°4/ax?) for Kubo er al’s model
is closer to the coefficient for the linear Schrodinger
equation at k#>02n than for Smith and Sprinks’
model.

Figure 12 shows the percent errors in k/k for the
linear Schrodinger equation, which can be compa-
red with Figure 3 for Smith and Sprinks’ model
and Figure 4 for Kubo et al's model. These figures
show that the percent errors in k/k for the linear
Schrodinger equation are much smaller than those
for Smith and Sprinks’ model and Kubo e al’s
model in whole water depth.
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