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Quasi-3D Wave-Induced Circulation Model
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Abstract| . A numerical scheme solving the quasi-3D wave-induced circulation is presented. The gover-
ning equations have been solved implicitly using a fractional step method in conjunction with the
approximate factorization techniques. The equation of each step was discretized by the finite volume
scheme which yields more accurate and conservative approximations than the schemes based on
finite differences. Examples of computed nearshore current patterns are presented to demonstrate
the validity of the model for typical situations through comparison with laboratory experimental

data (Gourlay. 1974).
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1. INTRODUCTION

The effort in nearshore circulation modelling can
gencrally be broken down into two related areas,
namely, the cross-shore circulation and the long
shore current generation, both inside and outside
the surf zone.

The vertical profile of cross-shore current pattern
has been studied during the past ten years for the
simple two-dimensional case on the plane beach.
Since the postulation of the driving mechanism by
Niclsen and Sorensen (1970), the analytical trcat-
ment was first appeared by Dally (1980). Svendsen
(1984) proposed a theoretical undertow model using
the first order approximation technique in descri-
bing the breaking waves, and Hansen and Svensen
(1984) further considered the effect of the bottom
boundary layer in the undertow. More recently, as
the study progresses, several ideas have been added.
Okayasu et al (1988) estimated undertow profiles
based on the assumcd mean shear stress and eddy

)}

viscosity, and Yamashita and Tsuchiya (1990) deve-
loped the numerical model which consists of sur-
face and inner layers.

Wave-induced longshore currents within the nea-
rshore zone may be generated by a number of me-
chanisms including an oblique wave approaching
the shoreline, a longshore variations in wave brea-
king height, or the combination of the above. The
need for the development of an adequate theory
for longshore currents has attracted a large number
of contributors since the pioneer paper of Putnam
and Arthur (1945). The theory for longshore curre-
nts by Longuet-Higgins (1970) was a rather elegant
analysis based on the concept of radiation stress.
His model and the concept behind it are widely
accepted. Most of the later attempts were more or
less modifications on the original model. The long-
shore current profile has been proposed by a num-
ber of investigators (de Vriend and Stive, 1987; Sve-
ndsen and Lorenz, 1989); most of them assumed
the profile to be equivalent to the logarithmic velo-
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¢ity profile found in uniform steady streaming flows.

Numerical modelling of nearshore wave-induced
currents has also advanced considerably since some
of the ecarlier developments by Noda et al (1974)
and Ebersole and Dalrymple (1979). Both of these
earlier models were driven by a wave refraction
model but with no current feedback. More recently,
Yoo and O'Connor (1986b) developed a wave-indu-
ced circulation model based upon what could be
classified as a hyperbolic type wave equation; Yan
(1987) and Winer (1988) developed their interaction
models based upon parabolic approximation of the
wave equation. The nearshore circulation, which
was predicted by all models listed above, deals pri-
marily with the vertically-averaged longshore cur-
rent. Any nearshore hydrodynamic model has not
been developed yet in the three dimensional formu-
lation. Recently, however, de Vriend and Stive (1987)
improved the nearshore circulation model by a
quasi-three dimensional approach, which employed
a combined depth-integrated current model and a
vertical profile model. They introduced a primary
and secondary profile for velocity variation over de-
pth and assumed the primary velocity profile to be
the same in the cross-shore and longshore direction.
This quasi-three dimensional approach can be the
first attempt towards a fully three-dimensional pre-
diction of the nearshore current pattern. Later, Sve-
nsen and Lorenz (1989) assumed that the equations
in the cross-shore and longshore directions could
be decoupled and solved the cross-shore and long-
shore motion independently of long coast with st-
raight bottom contours. Subsequently, the vertical
structure of the flow field inside the surf zone was
investigated only for simple case of two-dimensional
profiles. Most of the proposed surf zone models
whether theoritical or numerical were also restricted
to two-dimensional.

The purpose of this study is to present a numeri-
cal model of gravity waves and current motions in
the nearshore region extending into the surf zone
where the effects of turbulence due to wave brea-
king become important. The model is able to repro-
duce the three-dimensional features of nearshore
zone flow such as surface onshore flow. undertow,
longshore current, etc. The model developed here

allows for applications to more general three-dime-
nsional topographies.

2. NEARSHORE HYDRODYNAMIC
MODELS

In the present model, the wave model and circu-
lation model can be combined or separated through
the control of the main program. Therefore, the
model is basically applicable to the problems of
shallow water wave propagation and nearshore cir-
lulations driven by tides, wind and/or waves-indu-
ced radiation stresses.

This study describes the nearshore hydrodynamic
model for wave and current field in the nearshore
zone. The main model is the circulation model for
computing mean water surface and mean currents.
The wave model is a sub-model used to determine
the radiation stress which is required in the circula-
tion model as the forcing mechanism. The wave
model takes offshore wave conditions as input off-
shore and propagates into nearshore zone while ac-
counts for various nearshore processes including
shoaling. refraction, diffraction, reflection, and surf-
zone wave breaking. The basic wave model is deve-
loped for an irrotational flow field with steady mean
currents. Various modifications are incorporated to
accommodate for breaking and bottom friction effe-
cts. Figure 1 illustrates the main structure of the
wave-induced nearshore circulation model.

The governing equations for the nearshore circu-
lation model are divided into three major computa-
tional steps: 1) advection, 2) diffusion, and 3) propa-
gation, according to the fractional step method.
Each time step is composed of x-and y-directional
computations by the alternating direction implicit
method which speeds up the algorithm. The current
field is affected by wave characteristics which result
from the wave model. Here, a wave model(HM I)
of the same type as presented by Madsen and Lar-
sen (1987) is used.

The quasi-3D circulation model is governed by
the continuity and momentum equations integrated
over depth by parameterizing the vertical structure
of the currents. The model described herein may
be considered as an approximation to the full three-
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CIRCULATION MODEL
1) advection step

2) diffusion step

3) propagation step

* MAIN PROGRAM *

1) read input

2) call wave model selected
3) call circulation model
4)goto2ors

5) write output

WAVE MODELS INCLUDED

1) hyperbolic model I
2) hyperbolic model 11
3) elliptic model I
4) elliptic model 1T
5) parabolic model

Fig. 1. Structural overview of nearshore hydrodynamic
model.

dimensional model.

2.1 Depth-Integrated Circulation Model

The following mathemetical model is based on
results obtained by Lee and Wang (1993a).
The ventinuity equation:
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where C\, C> and C; of each axis are the coefficients
of vertical current profile as given in the next sec-
tion, and E'=pgH%/8. The bottom friction consists
of turbulent shear stress at the bottom, tgs and
and bottom friction due to viscous and streaming

flows. tpuy
5= Tam+ o= Fultto O+ F sl (Us+ Usm) — (4)

where F, is the wave friction factor varying over
the wave breaking zone as given earier, while F.
is the current friction factor assumed constant here.
The lateral shear stress is added to the momentum
equations as

T=- p[eyg—; + 8\—3} ] (5)

The mixing length coefficient, ¢,, is assumed to be
proportional to the distance from the shoreline, |xl,
multiplied by the shallow water phase speed as sug-
gested by Longuet-Higgins (1970):

8.\‘ :N\'|XI \/ g(h + T]«)

It was suggested that a dimensionless constant N,
should be less than 0.016. The y-directional mixing
length coefficient. g, is assumed to be a constant
everywhere.

2.2 Vertical Current Profile
A cross-shore circulation model is developed to
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account for the effect of vertically nonuniform cur-
rents. Based upon theoretical solution of simple ca-
ses as well as laboratory measurements, the velocity
profile may be approximated by a second order
parabola (see Lee and Wang (1993a) for more de-
tails).

u:C\ IZII+C\ZZ’+C\'3 (6)
v=C2"+Caz’ +C 0]

where z' is the nondimensional vertical axis, and
C\. C: and C; are determined in terms of discharge,
Q. wave height, H, total depth, A+m,, turbulent-in-
duced bottom shear stress, Tz and wind stress, T,
as follows.
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2.3 Wave Prediction Model

The mild slope equation of elliptic type on wave-
current interaction has been derived directly from
the balance of mechanical energy on a wave-current
coexisting field. which appeared to be the same as
derived by Berkhoff (1972) although his expression
was obtained for no current (Lee, 1994).

V(CCgV)+ (k°CCg~ iwo)p=0 (8)

where ¢ is the velocity potential at mean ° ater

level. C is the relative phase velocity (o/k). Cg is
the relative group velocity (go/gk), k is the wave
number determined by w=o+U-k as the absolute
angular frequency, o=+/gktanhkh as the relative
angular frequency. w is the dissipation function, and
V=ig/gx+]a/gy. omitting the subscript 4. In this
section. the governing equations of the hyperbolic
wave model are derived from the linearized MSE
of elliptic type, Eq. (8) for waves interacting with
currents. Equation (8) can be reduced to Helmohlz-
type equation (Radder. [979) without any essential
loss of generality as

Vo+k =0 )

where 0=1/CCgb. k =k —VACCg)\*/(CCg)* —iwa/
CCg. Equation (9) is particularly useful for the wave
prediction in harhour since it encompasses shoa-
ling, refraction, diffraction, and reflection effects of
short waves, while it requires more than about ten
grids per wave length.

Equation (9) can be written as a system of first
order equations similar to the mass and momentum
equations governing nearly horizontal flow in shal-
low water by use of the vector V& and scalar &

ovo

LC + V-(Vp)=0, 7 +VE=0 10y

ar ok

where £=1/CCg % .
c

In order to speed up the solution considerably, the
above equations are reformulated as done by Mad-
sen and Larsen (1987):

AY 1 R
2 —iwS+——V-R=0, o2 —ioR+VS=0 (i)
ot k.’ ot

with £=Se * and Vo=Re

Lee and Wang (1993b) has presented the analyti-
cal solutions of wave decay on a plane beach. Ho-
wever. their theoretical model can not be extended
to the general bathymetry such as barred beachs.
For an all-weather model, therefore, the wave decay
model presented by Dally. er al. (1984) is used. They
assumed that the dissipation rate is simply propor-
tional to the difference between the local energy
flux and that in the reformation zone. divided by
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the local water depth. In terms of the dissipation
function, w. the decay model can be written as

w:M (1— F§h:> (12)

h H
where Ty and I': are empirical constants. Dally, er
al. (1984) suggested that It =0.15 and I''=04 should
be used. It is assumed that wave breaking occures

when H/E<04.

3. ADI SCHEME

The main numerical technique follows that pro-
posed by Rosenfeld er al (1991) for solving time-
dependent, three-dimensional incompressible Na-
vier-Stokes equations in gencralized coordinate sys-
tems. The governing equations obtained are solved
by using a fractional step method in conjunction
with the approximate factorization techniques lca-
ding to the implicit finite difference schemes. Since
the time step of an explicit scheme is limited by
the Courant-Friedrichs-Lewy (CFL) condition, it is
advisable to reduce the number of time steps by
use of an implicit scheme. It turns out that the im-
plicit scheme accelerates the convergence of nume-
rical calculations for the stecady-state solutions. The
finite-volume method can yield more accurate and
conscrvative approximations than finite difference
methods in generalized curvilinear coordinate sys-
tems and avoid problems with metric singularitics
that are usually associated with finite-difference me-
thods since the flux integral form of ecquations is
approximated in the finite volume of each grid cell
as shown later. In addition, use of the finite volume
method scems to allow the most effective implicit
scheme even in the advection and diffusion steps.
On a Cartesian grid system employed in the present
model, the method reduces to a central-difference
method inside the computational domain except for
the boundary.

3.1 Fractional Step Method

A fractional step method is based on the recogni-
tion that the physical phenomena of water flow are
represented by superimposing three individual ope-
rations such as advection. diffusion and propagation

as Chorin (1968) pointed out. Therefore, momentum
and continuity equations for the circulation model
are divided into the following three elementary ope-
rations, while an equation set for the wave model
forms a propagation operator itself:

o Advection step:
We solve the advective terms in conservation law
form. including the radiation stress terms as:

80, oF 6
ot 0x oy

o Diffusion step:
The effect of lateral mixing is added in this step.

(13)

a'Q +a_F +LG. =0 (14)
ot ox oy
o Propagation step:
4 +Aﬂ+8ﬂ+220 (15)
ot ox oy

For the circulation model, the propagation step is
obtained by combining the remainder of the mo-
mentum equations with the continuity equation.
The surface shear stress terms are omitted here;
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where d is the total water depth.
For the wave model:

W=(R.. R. S)Y. Z=(—ioR,. —ioR,, —inS)
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3.2 Finite-Volume Discretization

Let N be the total amount of some property such
as mass. momentum and energy within the system
at time . The equation of each step can be written
in integral form

AN _ 9

U ‘_al—fﬂQdQ—Ffaanv (16)
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where Q is a fixed region with boundary g0 and
Q represents the conserved quantity and F is the
corresponding flux term. Equation (16) is applied
to each individual cell numbered by () to yield

a

~ 0 S :
o = (Q.AQ,)+ A; (F.AS)) (17)

where N is the number of cell faces. The conserved
variable Q;; and the flow variable F,; are taken at
the center of each cell (} j) as shown in Figure
2, hence the flow variable at each side F; is taken
as average of the two cell values on either side of
that cell face. for example,

1
FA:‘Z’(F, iyt Ey)

Then, Eq. (17) can be expressed in terms of values
at the center of grid cell as

dN 0 1
o 3 (Qi,AQ;)+ '2‘[(1::‘ -t FHAS,
HEy - T F)AS + (Fie ;T F)AS;

FT(Fy 1 +F)AS.] (18)

On a Cartesian grid system, let |AS>| and [AS,l
reduce to Ax, and |AS)| and [AS:| to Ay. then
AQ,, reduces to AxAy. Consequently, this yields the
central difference and is second-order accurate in
space as

av _ 4 R

i o (QuAxAy)+ 2[ (Fiy T Fi)Ay
~(Fy 1 FFipAx+(F. +F Ay

+(Fije 1 T F)Ax] (19)

Let the time rate of N be zero. then the above
equation becomes

LQH+L[ Fioy=Fiy 4 Fije1—Fy

= 20
or 2 Ax Ay }0 @0

The flux quantity should be given on the boundary
as is usually done in the staggered grid system.
Therefore. the flux quantity at the boundary is gi-
ven, instead of averaging, as done in Eq. (8). Al-
though the grid system employed here is the Carte-
sian. the reason why the finite volume method is
applied is for 1) preparing for the curvilirear coor-

[ J
Q41 Fi 41

>

L TT

® r.,K L4 Krk=z @

Qiayi Fie1,j Qigr,5 Fig1,j

Q-1+ Fij—1

Fig. 2. Computational grid of finite volumetric scheme.

dinate system. 2) locating the flux quantities at the
grid center to lead the system of equations to tridi-
gonal matrix form, and 3) preventing the metric
singularities along the boundary.

3.3 Approximate Factorizations
3.3.1 Impilicit Formulation
Discretization of Eq. (13) yields

LERTA N ' . . )
Q. N Qi s upF+péy "

Y
+(1-a)XD.F+D,GY, =0 @1

where D, and D, are the standard central difference
operators that approximate g/gx and §/gy and that
arc obtained through the finite volume discretiza-
tion, and a is a parameter weighting the evaluation
of spatial differences between the two time levels.
Let the Jacobian matrices be

which can be approximated by assuming that wave
characteristics are almost independent to velocity
components to give

Qo
&!(,O

and let the correction be
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AQH:QH I K_Qn

Lincarization of thc scheme may be achieved by
approximating F"~'* and G"*** by use of the Tay-
lor series expansions about time level n,

i)l <1 .‘zim_‘_gAQ. E}'n + H}zén_*_éAé
Substituting into Eq. (21) gives

AQ +Ata[D (AAQ '+ D, (BAQ)
= — At(D.F+D, G) (22)

By factoring AQ.

[+ A(DA+DBYIAQ,= — ADF+DGY,  (23)

If a is zero, this form definitely reduces to the exp-
licit type. A linear system of equations represented
by Eq. (23) is too expensive and impractical for
obtaining a solution. Therefore, an approximate fa-
ctorization of the implicit operator is usually perfor-
med, as illustrated later.

Discretization of Eq. (14) yields

o/
J—*’/—+Q(D F+DGY,"*
(1 —a)(DF+D,G)=0 (24)
Let the Jacobian matrices be
G OF o oG
which can be approximated by assuming that the

total depth is almost independent of velocity com-
ponents to give

i —2&% (%) 0
= 1 1
—oarlg) ealy)
(g 23
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0 —2e,

o
PN
|-
=

and let the correction be
AQI::QN»:I_QM

Lincariz»tion of the scheme may be achieved by

approximating PV oand G by use of the Taylor
series expasions about time level n,

F! + Z/Jzi;w +/:IAQ. Gn + Z/Jan +BAQ
Substituting into Eq. (24) gives
AQj+ AralD(AAQ);+D(BAQ);]
=—A{DF+D,G)} +AQ" (25)
By factoring AQ,
L7+ Ar(DA+DBYIAD)
=~ADF+DGY+A Q" (26)
Discretization of Eq. (15) yields
Wyt - Wt
At
+(1—~o)YADW+BD WY+ Z;=0 @7

+adD W+ BD,WY;*

Let the correction be AW'=W"ti—

AW,

W' by factoring

— AHAD.W+BD, W+ ZY,;+ AW" (28)

3.3.2 ADI Factorization

The scheme (23) is reduced to the alternating di-
rection implicit (ADI) scheme by a product of two
one-dimensional operators,

[+ AraD, A, I+ AraD B/ IAQ)
=~ A(DF+DG)/ 29)

which can be inverted in two advanced time levels
for one complete application to the two-dimensional
system as

[+ AraD A, TAQ," = — AUD.F+D,G);’ (30)

[+ AtaD,B,"JAQ; = AQ;" 31

Each unknown quantity in the left hand side is
expressed implicitly at the advanced time level, and
each right hand side is expressed explicitly in terms
of known values. This scheme is unconditionally
stable for the linear case if a21/2. Expanding Eq.
(30) into x and y components, respectively,

AD."+2Ar0] D ( 0 AQ, )}

_ A,[;“ /% + ST +dT\,\)
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+D..<—Q;1Q;r% +d71,,.ﬂ" 32)
AQ."+ Aro| D ( & £p+-2 AQ‘)] -
_A’[ (QdQ %MT)

+D( Q7 2 +dT”)] (33)

and expanding Eq. (31).
O

agi+ Al p £ % ag)[=a0" @9

AQ1+2Ata[ (Q‘ AQ, )] AQ," (35)

For the diffusion step. the scheme (26) is also redu-
ced to the ADI scheme as

[I+AtaD, 4;1A Q"= —AiDF+D,G)"+AQ;"

(36)
I+ AwD, B/IAQ/=AQ," 37
Expanding Egs. (36) and (37),
AQ."— [a(ze\a 1AQ, )] =
alp (8\0\7‘>+D( O apr o

AIU{D(S,D, +e.D, AdQ' )]

[ DsD, %‘ )+D(svD, s or @)

AD?—Are| D (28‘ \ AdQ‘ +e.D, dQ)]”zAQ\'”
(40)
A Qv —A|D 2, ‘.Af")]":AQ‘*" @41

The alternating direction implicit (ADI) scheme is
applied to propagation step as

LI+ Arad;'D, U+ AroBy/' D AW =
—AAD.W+BDW+Z)+A Wy (42)

which can be inverted in two steps

:1+ AOA //"D\ ]A Wj*” =
—~AADW+BDW+Z)/+A W, 43)
I+ AtoB,/'DIAW, = AW," (44)

Expanding Egs. (43) and (44) for the circulation
model;

AQ."+ Atad"D A0 = — Az[ngwn(- tz‘] +A Q!
(45)
An"+ AraD.AQ"= — Ai[D.Q.+D,Q, T (46)
AQ,"+ Atad"D,An.'= — At[ngrn(» + rg"' ] +A Q)
(47
An’+ AraD,AQ, = — An.™ )
and for the wave model;
kA1 —iwaANDAS™ + aAtD AR" =
AtiokS—D.R,—D.R.)' (49)
(1—-iwaA)AR,"+aADAS" = Ai{ioR,— D.SY'
(50)
k(1 —ioaADAS™ +aAtD,AR,"= AS™ (51

(1—iwaANAR," +aAD,AS” = At(ioR,—D,SY’  (52)

The above finite difference equations form the tri-
diagonal matrix for each axis.

3.4 Formation to Tridiagonal Matrix

The tridiagonal algorithm is the one direct me-
thod that is used widely in solving difference equa-
tions because of its great efficiency. In order to use
this algorithm. the coefficients of the difference
equations should form a tridiagonal matrix. The
finite volume method allows each grid point to be
posed at the center of the grid cell so as to give
a system of equations that retains the computatio-
nally advantageous tridiagonal form for both advec-
tion and diffusion steps. For the propagation step
of the circulation model, however, the point of cur-
rent vector U (u;, vp) is posed at the grid side to
allow the tridiagonal matrix the same as the tradi-
tional staggered grid system shown in Figure 3.

Discretizations of Egs. (32-35) by finite volumes
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yield

AQ\ ”+70.
+((u A Q\‘)I‘l./:] '=D,

AQ,"+2a
O

A Q) J"=D—alD, AQ]

At - -
AQ+ ZQE [(—vpAQ); 1T+ ((ve—vn) AQ)y
+ (V[)AQ)')A./ + l:]” = AQ\'*"

A R .
AQ\"+2Q2—AIY [(=voAQ)y 1+((ve—vn) AQL),

0.

+pAQ)y 1 ' =A0,"— aAt[ AQ, ]

~vhere

llkll,,;ul,ln 1y UR|L/:MI_[P 1y

Discretizations of Egs. (3841) yield
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Discretizations of Eqs. (45-48) yield

Au,”+(1g [nu/ Neis I/] "= _At[gD‘T]l‘l‘ A ]”
od
+Au,”
(Al)*”—}—aﬂ Cur—up), 1" :‘_AI[D\-IJI +Dypl"
d) A -" D
Tay
Aun""‘ag [nu/ Neij ]:] = _At[gD T]‘ F:i :|
+AVS
Y At A -\
(8% +oyy e, r=(F)
where

Auy"= l[(% ),ﬁ(% ) l,]

Avy'= 2[( 0 ),ﬁ (%), l]

Discretizations for the wave model are similar to
those for the circulation model shown above.

Now we can obtain the tridiagonal matrix form
of the resulting difference equations; the matrix
coefficients are given according to each step and
each direction.

4. MODEL RESULTS

4.1 Model Verification for Wave-Current Interac-
tion

Wave-current interaction is compared for colli-
ne' - wvay 1d current in constant deep water de-
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Fig. 3. Grid system of circulation model.

b oup

pth of 3 m. The given wave conditions are H;=0.1
m at the upwave boundary and T=1 sec. Waves
are allowed to pass freely through the downwave
boundaries. The input data required for the model
are given as follows; number of grids in x axis= 101,
number of grids in y axis=21, Ax=0.1 m, Ay=0.1
m and Ar=1 sec. The variation of resulting wave
heights agree well with analytical solutions as
shown in Figure 3. The implicit weighting parame-
ter was given as 0.5.

The MSE of elliptic type given by Lee and Wang
(1994) produces the finite wave height at the critical
current speed which is regarded as the more reaso-
nable result than the infinite wave height. If wave
energy is fully propagated over a whole domain,
we can assume that the stochastic characteristic of
wave energy is governed by the MSE of elliptic
type although the wave energy shows temporally
unsteady state due to varying currents. Consequen-
tly. in this study, the MSE of elliptic type were used
as the basic equation of numerical models predic-
ting waves in semi-steady state.

5. COMPARISON WITH
GOURLAY'S EXPERIMENTS

In order to examine the model capability more
comprehensively, this section considers the complex
situation in which all wave phenomena and intera-
ction between waves and currents are involved.

Jung Lyul Lee
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Fig. 4. Comparison with analytic solutions with results co-
mputed by HM L
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Fig. 5. Physical layout of Gourlay's experiment (1974).

Gourlay (1974) presented the circulation pattern ge-
nerated in the lee of a shore-connected breakwater.
Unfortunately, this experiment did not represent any
three-dimensional patterns. Nevertheless, it corres-
ponds with the re(iuest of thishsection at this mo-
ment. Figure 5 shows the physical layout of the
experiment done by Gourlay for a water mass sub-
jected to waves propagating normally at the open
boundary. His experiment was perfomed for a wave
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Fig. 6. (a) Contour lines of measured heights (b) Compu-
ted height contours.

height of 9.1 centimeters with a wave period of 1.5
scconds. The contour lines of measured wave hei-
ghts and set-ups arc shown in Figures 6a and 7a.
respectively. The current pattern is presented in Fi-
gure 8a. These experiments were compared with the
model results obtained by Yoo and O’Connor (1986,
1988), Gaillard (1988), Winer (1988), and sc on.
The wave model was coupled to provide the
stcady wave informations to the nearshore circula-
tion model. For the numerical computation the grid
size of 199 centimeters and the time step of 0.3
sce. were used. The steady state solutions could be
obtained by 100 iterations. In the circulation model,
six parameters arc required: the implicit weighting
parameter for the numerical scheme. a. was given
as 1. the friction factor, F,=70.02, the shape factor,
y=098. B, =50. and the horizontal mixing coeffi-
cients, g, and ¢ were given as 0016 and 0.02. respe-
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Fig. 7. (a) Contours of measured set-ups (b) Computed
set-up contours.

ctively. In the wave model, mainly two parameters
are required; ratio of wave height to water depth
at a breaking point, x was given as (.78, and the
B which is employed in the wave breaking model
was given as 1.15 for the slope of 1:10.

The results of wave height in the wave-current
interaction field are compared in centimeter unit
in Figure 6b, and those of sct-up in Figure 7b. As
shown in Fig. 8b, both circulations at the right up-
per comer and at the left lower corner appeared
in the numerical results and the overall current pat-
tern agreed reasonably with the measurement. From
Figure 9a it becomes obvious that the quasi-three
dimensional model can describe the surface velocity
pattern measured by the particle moving with the
residual wave fluctuation. Figure 9b shows the bot-
tom velocity which is believed to affect the sediment
transport.
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6. CONCLUSIONS

The numerical method for solving the integrated
quasi-three dimensional, unsteady, nearshore hydro-
dynamic model is presented utilizing the fractional
step method in conjunction with the approximated
ADI factorization techniques leading to an implicit
scheme. The hydrodynamic model is composed of
hyperbolic-type wave model and circulation model
so that they could be effectively combined together.
The employment of finite-volume discretization on
a staggered mesh leads to a set of tridiagonal sys-
tems of equations that are easy to solve.

The mathematical quasi-3D model has already
been compared with surf zone properties on uni-
form slope (Lee and Wang, 1993a). In this study,
the numerical model is successfully applied to ob-
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Fig. 9. (a) Surface current pattern (b) Bottom current pat-
tern.

tain the variations of wave height, onshore and lo-
ngshore currents giving a reasonable agreement with
labolatory experimental data (Gourlay, 1974).
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