DIRICHLET PROBLEM ON THE UPPER
HALF PLANE – A HEURISTIC ARGUMENT

GEON H. CHOE

The Dirichlet problem (DP) on the upper half plane \(\{z = x + iy : y > 0\} \) is to find a real-valued harmonic function \(u(x,y) \) satisfying \(u(x,0) = g(x) \) almost everywhere for some reasonably nice function \(g \) defined on the real line, which is called the data on the boundary for (DP). To find such a function we use the formula

\[
 u(x,y) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{g(\xi)y}{(x-\xi)^2 + y^2} d\xi \quad \text{for } y > 0.
\]

In most references it is derived using Cauchy’s integral formula. In this short article we derive the formula using elementary ideas. First we need

LEMMA. Let \(g \) be a real valued function defined on the real line such that \(g(x) = 1 \) for \(a \leq x < b \) and \(g(x) = 0 \) elsewhere, i.e., \(g(x) = \chi_{[a,b]} \). Choose a branch for \(\log z \) so that it is single-valued and analytic on the upper half plane. For example, put \(\log z = \log |z| + \text{Arg}(z), \frac{\pi}{2} < \text{Arg}(z) < \frac{3\pi}{2} \). Then the solution of (DP) is given by

\[
 u_{ab}(x,y) = \frac{1}{\pi} \text{Im} \left[\log \frac{z-b}{z-a} \right].
\]

Proof. Since \(\text{Arg}(z), z \neq 0 \) is the imaginary part of the analytic function \(\log z \), it is harmonic. Hence \(\text{Arg}(z-b) - \text{Arg}(z-a) \) is harmonic on the upper half plane, which is equal to the imaginary part of \(\log(z-b) - \log(z-a) = \log \frac{z-b}{z-a} \). It is easy to see that the function satisfies the boundary condition except at \(z = a, b \). For the details, see [1, p. 377].

Note that (DP) is linear with respect to the data \(g \) on the boundary in the sense that if \(u_1, u_2 \) are solutions for (DP) with boundary data

Received October 12, 1993.
\(g_1, g_2, \) respectively, then \(u = c_1u_1 + c_2u_2 \) is the solution for \((DP) \) with boundary data \(g = c_1g_1 + c_2g_2 \) where \(c_1, c_2 \) are arbitrary constants.

For a general Dirichlet Problem we consider the case when \(g \) is piecewise continuous and integrable along the real line. We will generalize the concept of linearity of \((DP) \) up to an infinite sum of \(g_i \)'s and decompose the given data \(g \) into an infinite linear combination of characteristic functions of infinitesimally short intervals.

We partition the real axis into very short intervals \(I_k = [x_k, x_{k+1}), \) \(-\infty < k < \infty, \) and consider the \((DP) \) for \(g_k(x) \equiv g(x_k) \cdot \chi_{I_k}(x) \) and find the corresponding solution

\[
\begin{align*}
 u_k(z) &\equiv g(x_k) \cdot \frac{1}{\pi} \text{Im} \left[\log \frac{z - x_{k+1}}{z - x_k} \right].
\end{align*}
\]

Note that \(g \) is approximately the sum of all \(g_k \) since \(\Delta x_k \equiv x_{k+1} - x_k \) is very small and \(g \) is continuous.

Since \(\log \frac{z - x_{k+1}}{z - x_k} = \log(1 - \frac{\Delta x_k}{z - x_k}) \) is approximately equal to \(\frac{\Delta x_k}{x_k - z} \) by the first order approximation, \(u_k(z) \) is approximately equal to \(g(x_k) \cdot \frac{1}{\pi} \text{Im} \left[\frac{\Delta x_k}{x_k - z} \right], \) hence the solution \(u(z) \) of the original \((DP) \) with the boundary data \(g(x) \) is approximately equal to

\[
\sum_{k=-\infty}^{\infty} g(x_k) \cdot \frac{1}{\pi} \text{Im} \left[\frac{1}{x_k - z} \right] \Delta x_k.
\]

As the partition of the real line becomes finer and finer, i.e., the lengths \(\Delta k \) get shorter indefinitely, we obtain

\[
u(z) = \int_{-\infty}^{\infty} g(\xi) \cdot \frac{1}{\pi} \text{Im} \left[\frac{1}{\xi - z} \right] d\xi.
\]

Now we use \(\text{Im} \left[\frac{1}{\xi - z} \right] = \text{Im} \left[\frac{1}{\xi - x - iy} \right] = \frac{y}{(\xi - x)^2 + y^2}, \) which completes the proof.
REFERENCES

Korea Advanced Institute of Science and Technology
Taejon 305-701, Korea