• Woo, Sung-Sik (Department of Mathematics Ewha Women's University)
  • Published : 1994.04.01


An elliptic module is an analogue of an elliptic curve over a function field [D]. The dual of an elliptic curve E is represented by Ext(E, $G_{m}$) and the Cartier dual of an affine group scheme G is represented by Hom(G, G$G_{m}$). In the category of elliptic modules the Carlitz module C plays the role of $G_{m}$. Taguchi [T] showed that a notion of duality of a finite t-module can be represented by Hom(G, C) in a suitable category. Our computation shows that the Ext-group as it stands is rather too "big" to represent a dual of an elliptic module.(omitted)