EXTENSIONS OF t-MODULES

SUNG SIK WOO

1. Introduction

An elliptic module is an analogue of an elliptic curve over a function field [D]. The dual of an elliptic curve E is represented by $\text{Ext}(E, \mathbb{G}_m)$ and the Cartier dual of an affine group scheme G is represented by $\text{Hom}(G, \mathbb{G}_m)$. In the category of elliptic modules the Carlitz module C plays the role of \mathbb{G}_m. Taguchi [T] showed that a notion of duality of a finite t-module can be represented by $\text{Hom}(G, C)$ in a suitable category. Our computation shows that the Ext-group as it stands is rather too “big” to represent a dual of an elliptic module.

2. Elliptic modules and t-modules

Throughout this paper we fix the following notations: p is a fixed prime, A is the polynomial ring $\mathbb{F}_p[t]$, K is a perfect field containing A and θ is the image of t in K. As usual $\mathbb{G}_{a,K}$ denotes the additive group scheme over K. It is well known that the ring of endomorphisms $\text{End}_K(\mathbb{G}_a)$ is a noncommutative polynomial ring $K[\tau]$ with a commutation relation,

$$\tau x = x^p \tau \quad \text{for} \quad x \in K.$$

DEFINITION 1. An elliptic module or a Drinfeld module E of rank r is the additive group scheme \mathbb{G}_a together with an A-action

$$\psi : A \to \text{End}_K(\mathbb{G}_a) = K[\tau]$$

such that

(i) degree of ψ_a in τ is the same as $\text{deg}(a)r$,
(ii) the constant term of ψ_α is the same as the image of α in K.

If (E_1, ψ_1) and (E_2, ψ_2) are elliptic modules then a morphism from E_1 to E_2 is defined to be an endomorphism u of G_a such that $u \circ \psi_1 = \psi_2 \circ u$.

Andersen [A] gave a definition of higher dimensional analogue of elliptic modules.

Definition 2. An abelian t-module over K is the A-module valued functor E such that

(i) as a group valued functor E is isomorphic to G_a^n for some n,
(ii) $(t - \theta)^N \text{Lie}(E) = 0$ for some positive integer N,
(iii) there is a finite dimensional subspace V of the group $\text{Hom}(E, G_a)$ of the morphisms of K-algebraic groups such that

$$\text{Hom}(E, G_a) = \sum_{j=0}^{\infty} V \circ t^j.$$

A morphism between t-modules is simply a natural transformation of the functors.

Let $K[t, \tau]$ be the noncommutative ring generated by t and τ over K with the relations; $t\tau = \tau t$, $xt = tx$, $\tau x = x^p \tau$ for $x \in K$.

Definition 3. A t-motive M is a left $K[t, \tau]$-module with the following properties,

(i) M is free of finite rank over $K[t]$,
(ii) $(t - \theta)^N (N/\tau M) = 0$ for some positive integer N,
(iii) M is finitely generated over $K[\tau]$.

A morphism between t-motives is simply a $K[t, \tau]$-linear map.

Andersen [A] showed that the category of t-modules is anti-equivalent to the category of t-motives. To state his theorems let E be a t-module and let $M(E)$ be the set of all morphisms $E \to G_a$ of K-algebraic groups equipped with $K[t, \tau]$-module structure,

$$\begin{cases}
(xm)(e) = x(m(e)), \\
\tau(m)(e) = m(e)^p, \\
tm(e) = m(t(e)),
\end{cases}$$

for $e \in E$.

Theorem 1. The functor sending E to $M(E)$ is an anti-equivalence of categories between t-modules and t-motives.

We recall another result of Anderson [A] for future use. Let E be a t-module. Let

$$H_*(E) = \text{the kernel of exp : Lie}(E) \to E(K).$$

Theorem 2. Let K be the algebraic closure of $\mathbb{F}_p((1/t))$. The following are equivalent:

(i) $\text{rank}_A(H_*(E)) = \text{rank}(E)$.

(ii) $\exp : \text{Lie}(E) \to E(K)$ is surjective.

A t-module E satisfying any one of the conditions will be said to be uniformizable.

3. Extensions of t-modules

In this section we make explicit computation of Ext groups and study their related properties.

Proposition 1. Let M_1 and M_2 be t-motives. If

$$0 \to M_1 \to M \to M_2 \to 0$$

is an exact sequence of $K[t, t^\tau]$-modules, then M is again a t-motive. In particular, if $0 \to E_1 \to E \to E_2 \to 0$ is an extension of t-modules, then E is isomorphic to G^n_α for some n.

If E_1 and E_2 are uniformizable, then so is E.

Proof. For the first statement we need to check three conditions of Definition 3. First M is free of finite rank, since so are M_1 and M_2. Second we need to check $(t - \theta)^N(M/\tau M) = 0$ for some N. Let $(t - \theta)^r(M_1/\tau M_1) = 0$, $(t - \theta)^s(M_2/\tau M_2) = 0$. Since we have an exact sequence

$$M_1/\tau M_1 \to M/\tau M \to M_2/\tau M_2 \to 0,$$

we see that $(t - \theta)^{r+s}(M/\tau M) = 0$. The third condition is immediate.
For the last statement, consider the following commutative diagram;

\[
\begin{array}{cccc}
0 & \rightarrow & \text{Lie}(E_1) & \rightarrow & \text{Lie}(E) & \rightarrow & \text{Lie}(E_2) & \rightarrow & 0 \\
\downarrow \text{exp} & & \downarrow \text{exp} & & \downarrow \text{exp} & & \\
0 & \rightarrow & E_1(K) & \rightarrow & E(K) & \rightarrow & E_2(K) & \rightarrow & 0.
\end{array}
\]

Our assertion follows since exponential maps are surjective on \(E_1(K)\) and \(E_2(K)\).

Proposition 2. Let \(E_1, E_2\) be \(t\)-modules then, we have an isomorphism

\[
\text{Ext}_{t-\text{mod}}(E_1, E_2) \cong \text{Ext}_{K[t, \tau]}(M(E_1), M(E_2)).
\]

Proof. Immediate from Theorem 1 and Proposition 1.

Theorem 3. Let \(E\) be an elliptic module of rank \(r\) and \(C\) be the Carlitz module. Then \(\text{Ext}^1(E, C)\) is isomorphic to \(K^r\) as an abelian group.

Proof. Write \(R = K[t, \tau]\). To compute Ext-group we use a free resolution,

\[
0 \rightarrow R \xrightarrow{d_1 = t - \psi_t^C} R \xrightarrow{\pi} M(C) \rightarrow 0
\]

where \(d_1(r) = r(t - \psi_t^C)\) and \(\pi\) sends \(t\) to \(\psi_t^C\) and \(\tau\) to \(\tau\). Now apply \(\text{Hom}_R(\cdot, M(E))\) to the above resolution,

\[
\text{Hom}_R(M(C), M(E)) \rightarrow \text{Hom}_R(R, M(E)) \xrightarrow{d_1^*} \text{Hom}_R(R, M(E)) \xrightarrow{d_2^*} 0.
\]

Here we identify \(\alpha \in \text{Hom}(R, M(E))\) with \(\alpha(1) \in M(E) = K[\tau]\) and \(d_1^*(\alpha) = \alpha \psi_t^E - \psi_t^C \alpha\). Hence \(\text{Ext}^1(E, C)\) is isomorphic to \(K[\tau]/\mathcal{B}\) where

\[
\mathcal{B} = \{\alpha \psi_t^E - \psi_t^C \alpha \mid \alpha \in K[\tau]\}.
\]

Here we note that \(\mathcal{B}\) is not a \(K\)-submodule of \(K[\tau]\).

To prove our assertion, we claim that for a given \(f\) there is a unique \(\alpha\) such that the degree of \((f - (\alpha \psi_t^E - \psi_t^C \alpha))\) is less than \(r\) which is the rank of \(E\). To prove this we use induction on the degree of \(f\). If the
degree of f is less than r, then we can choose α to be 0. Now suppose that $\deg(f) = n + 1$. Since we can write $f = b_{n+1} \tau^{n+1} + f_n$ where f_n is a polynomial in τ of degree less than or equal to n and since we are assuming our assertion for f_n, we only need to prove our assertion for $b_{n+1} \tau^{n+1}$. First assume $(n + 1) < 2r$. Then by Euclidean algorithm [A] in $K[\tau]$ we see that there are unique α and γ' in $K[\tau]$ such that

$$b_{n+1} \tau^{n+1} = \alpha \psi^E_t + \gamma'$$

and $\deg(\gamma') < r$, where $\deg(\gamma') < r$ and $\deg(\alpha) < r$ since $(n + 1) < 2r$. Therefore

$$b_{n+1} \tau^{n+1} = \alpha \psi^E_t - \psi^C_t \alpha + \gamma$$

where $\gamma = \gamma' + \psi^C_t \alpha$. Now proceed in the same way to get rid of our extra assumption that $(n + 1) < 2r$.

Now the map

$$\text{Ext}^1(E, C) = K[\tau]/\mathcal{B} \rightarrow K^r$$

sending f to the coefficients of $(f - (\alpha \psi^E_t - \psi^C_t \alpha))$ is obviously an isomorphism.

Remark. The group $\text{Ext}^1(E, C)$ is not a K-vector space.

Proposition 3. The t-action on $\text{Ext}^1(E, C) = K[\tau]/\mathcal{B}$ is given by right multiplication by ψ^E_t or which is the same as left multiplication by ψ^C_t.

Proof. Consider the commutative diagram

$$
\begin{array}{cccccc}
0 & \longrightarrow & R & \overset{d_1=t-\psi^C_t}{\longrightarrow} & R & \overset{\pi}{\longrightarrow} & M(C) & \longrightarrow & 0 \\
\downarrow t & & \downarrow t & & \downarrow t=\psi^C_t & & \\
0 & \longrightarrow & R & \overset{d_1=t-\psi^C_t}{\longrightarrow} & R & \overset{\pi}{\longrightarrow} & M(C) & \longrightarrow & 0.
\end{array}
$$

Apply the functor $\text{Hom}_R(-, M(E))$ and carefully chase the diagram.

Let E be an elliptic module and C be the Carlitz module. Let

$$0 \rightarrow C \rightarrow E \rightarrow E \rightarrow 0$$

be an extension of algebraic groups. Then by Proposition 1 we see that E is isomorphic to G^2_a as an algebraic group. So the extension E depends only on the t-module structure on G^2_a. Given f in $\text{Ext}^1(E, C) = K[\tau]/\mathcal{B}$ we will describe the corresponding extension, namely the t-action on G^2_a.
Theorem 4. Let \(f \in \text{Ext}^1(E, C) \) and
\[
0 \to M(E) \to M \to M(C) \to 0
\]
be the corresponding extension of \(t \)-motives. Then \(M \cong K[\tau] \oplus K[\tau] \) with \(t \)-action given by
\[
\begin{bmatrix}
\psi^E_t & f \\
0 & \psi^C_t
\end{bmatrix}.
\]

Proof. The extension \(\mathcal{E} \) corresponding to \(f \in K[\tau]/B \) is given by
\[
\begin{array}{cccccc}
0 & \to & R & \overset{d_1 = t - \psi^E_t}{\to} & R & \overset{\pi}{\to} & M(C) & \to & 0 \\
\downarrow f & & \downarrow & & \downarrow & & \downarrow \text{id}
\end{array}
\]
where \(\mathcal{R} = \{(-rf, d_1(r)) | r \in R \} \). We define a map
\[
\phi : M(E) \oplus R/\mathcal{R} \to K[\tau] \oplus K[\tau]
\]
by sending \((m, t)\) to \(m + (\psi^C_t + f) \) and \((m, \tau)\) to \(((m + \tau), \tau)\). For brevity we write \(M = K[\tau] \oplus K[\tau] \). Now one checks that this is an isomorphism. The inverse of \(\phi \) sends \((a, b)\) to \((a - b, b)\).

To get the \(t \)-action on \(M \) we transport the \(t \)-action on \(M(E) \oplus R/\mathcal{R} \) via \(\phi \) and send it back to \(M \): To find \(t \)-action on \((a, b)\) in \(M \) we lift it to \((a - b, b)\) in \(M(E) \oplus R/\mathcal{R} \). Hence in \(M(E) \oplus R/\mathcal{R} \) we have,
\[
t(a - b, b) = ((a - b)\psi^E_t, tb).
\]
Now send this to \(M \) via \(\phi \) to get the \(t \)-action on \(M \)
\[
t(a, b) = ((a - b)\psi^E_t + b(\psi^C_t + f), b\psi^C_t).
\]
Now our assertion follows since \((\psi^E_t - \psi^C_t) \in \mathcal{B}\).

Let \(\phi \) be an isogeny of an elliptic module. Then the kernel of \(\phi \) is a finite \(t \)-module in the sense of Taguchi [T]. By the standard results of homological algebra [S], we have an exact sequence,
\[
0 \to \text{Hom}(G, C) \overset{\delta}{\to} \text{Ext}^1(E, C) \overset{\phi^*}{\to} \text{Ext}^1(E, C).
\]
We have zero on the left because there is no morphisms between the elliptic modules of different rank. (We are assuming the rank of \(E \) is bigger than 1.) We want to compute the map \(\delta \).
Theorem 4. $\delta(f)$ is given by $F \in K[\tau]/B$ such that

$$F \phi = f \psi^E_t - \psi^C_t f.$$

Proof. Consider the following diagram,

$$
\begin{array}{ccccccccc}
0 & \rightarrow & R & \xrightarrow{d_1=t-\psi^E_t} & R & \xrightarrow{\pi} & M(C) & \rightarrow & 0 \\
\downarrow F & & \downarrow (f,1) & & \downarrow id \\
0 & \rightarrow & M(E) & \xrightarrow{(\phi,0)} & f^*M(E) & \rightarrow & M(C) & \rightarrow & 0 \\
\downarrow id & & \downarrow & & \downarrow f \\
0 & \rightarrow & M(E) & \rightarrow & M(E) & \rightarrow & M(G) & \rightarrow & 0.
\end{array}
$$

Here $f^*M(E)$ is the fiber product $M(E) \times_{M(G)} M(C)$. First lift f to $M(E)$ which we still call f. Now chase the upper left square to get F which satisfies the property $F \phi = f \psi^E_t - \psi^C_t f$.

References

[T] Taguchi, A duality for finite t-modules, (a circulating note).

Department of Mathematics
Ewha Women's University
Seoul 120-750, Korea