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We present a theoretical study of the non-symmetrical A/BC polymeric system. The polymer blends consist of two 
phases, a pure polymeric phase A on one side and a mixture of polymers B as a compatibilizer and C on the other. 
The adsorption of homopolymer B to the interface improves the interfacial adhesion between two phases. By employing 
the functional integral techniques, we derive the mean-field equations and solve them numerically to obtain the interfa­
cial properties including the concentration profiles in the limit of infinite molecular weight for the polymers. The 
calculations of the interfacial properties are performed for typical values of the Flory / parameters and the volume 
fraction of polymer B in the asymptotic mixture phase. The interfacial adsorption of polymer B and the degrees 
of the specific interaction between the polymers play an important role in modification of the interfacial properties.

Introduction

For most polymers it is tb ermodynamically unfavorable 
to form the homogeneous mixtures with each other. This 
is so because the combinatorial entropy of mixing of two 
polymers is dramatically smaller than that for the low mole­
cular weight components. The enthalpy of mixing, on the 
아her hand, is often a small positive quantity or, at best, 
zero. In such cases immiscibility results when polymers are 
mixed. For that reason, it is worthwhile and interesting that 
the understanding and adjusting of the interfacial properties 
between the phases in the immiscible polymeric systems.

There has been a great deal of interest in experimental1-5 
and theoretical6-20 studies of the interfacial properties of 
inhomogeneous multicomponent polymeric systems. Helfand 
and co-workers8-10 developed a mean-field theory for predic­

ting the interfacial properties between two immiscible poly­
mers, and Noolandi and co-workers1315 also presented fully 
self-consistent calculations of the polymer density profiles 
and resulting interfacial tension at polymer/polymer interfa­
ces in the presnece of a solvent and the effects of copolymers 
at these interfaces. However, r이ativ이y little work has been 
done to extend the immiscible polymer-polymer systems to 
include the effects of third hompolymers as compatibilizers, 
which polymeric systems usually show the intrinsic non-sym­
metrical interfaces. Recently Helfand16 extended the theory 
of the A/B interface to the specific one of A/BC for the 
interfacial tension via equations of motion.8-10,21

In this work the A/BC interface between two phases is 
considered, which is the same model as recent Helfand's 
work,16 a pure polymeric phase A on one side and a mixture 
of polymer B as a compatibilizer and polymer C on the other 
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hand. Our theoretical formulation constitutes an extension 
of some work by Noolandi.13 By employing the functional 
integral techniques,9,13,22 -24 the mean-field equations are deri­
ved and numerically solved by a self-consistent procedure 
in the limit of infinite molecular weight for the polymers 
and a vanishing compressibility. This work may be easily 
extended to the system including the effect of solvent.

We will assume that the interface between two phases 
is planar. However, there seems to be no sharply defined 
boundary in the actual interfacial region, so it is convenient 
to choose the mathematical dividing surface. We will select 
it as the Gibbs dividing surface16,25 for polymer A. The calcu­
lations of interfacial properties are performed for typical va­
lues of the Flory x parameters,26,27 X4C and 海 as negative 
value and the volume fraction of polymer B in the asymptotic 
mixture phase,如(8). As the results, we obtain the concent­
ration profiles, the interfacial tension, the width of polymer 
B, the amount of polymer B adsorbed to the interface, and 
the overlap lengths between the polymers.

The next section contains the general theory for the poly­
meric systems on the basis of the mean-field approximation, 
the case of infinite molecular weight for the polymers as 
a good approximation, and the numerical method used to 
solve the mean-field equations. We discuss the results of 
the calculation of the physical properties of the interface in 
the third section, and remark the conclusions in the last 
section.

Theory

Partition Function. The polymer chains will be looked 
upon as space curves with r varying from 0 to 7나、、the degree 
of polymerization (hereafter, we use the letter K to symbolize 
the polymers A, B, and C). The space curves {次(•)}, which 
are Gaussianly distributed and represent possible configura­
tions of the polymers, are continuous with the rate of exten­
sion at each point dr^dx. The probability density functional 
for a given space curve is

F*x( ・ 壮exp{ - 思 dT[쓰E) J} ⑴

where is the Kuhn statistical length.
Assuming the A/BC system to be incompressible, the par­

tition function can be written as a functional integr가 of the 
probability density functional with the incompressibility con­
straint over all possible configurations^ of the polymers in 
the fi시d of intermolecular potential, 机{次J •)}丄 in units 
of kBT't viz.

Z=(卩詰財峋(・)}殂此(•)}]

X6[l-帰-%?니 exp{-和吹,(•)} 가 (2)

Here Nk=Nk/Zk is the number of polymer chains, where 
Nk is the total number of monomer units of polymer K. The 
8-function ensures an incompressibility, and 卩质 is the den­
sity of pure polymer K in monomer segments per unit 
volume. Using the three microscopic densities of monomer 
units which are given by

PkB)=PkB；此(•)}) = &成一”(匸)] (3)
i

the intermolecular potential related to the interaction bet­
ween monomer units can be conveniently expressed via two- 
body interactions, WkkQ—F), as

命사• )}] = 号/J써渺KK'(r—尸)PkW) (4)

By introducing the integral representation over a Dirac 8- 
function which fixes the density pattern, we have

中―= • )8[pK( • )—Pk( • )1]
幕一舊*" ⑸

and two 8-functions in Eq. (5) can be parameterized as

8[际 •)-(*(• )]凶丄血)k( • )凶)低汽&(尸)[际尸)一际尸)가 (6)

뽑？]脚(・)exp{加에1一{黑]} ⑺

In these ways the dependence of the densities on all possible 
configurations can be expressed by the local values which 
are only coupled by the fields 顷(•) and q( •) defined in 
Eq. (6) and Eq. (7), respectively. Therefore, the integration 
over all possible configurations of a given chain can be done 
independently of the other chains. Here 由尸)is the mean 
field acting on the polymer, and the field q(r) is the Lagra­
ngian multiplier corresponding to the constraint of no volume 
change locally upon mixing. By substituting the integral rep­
resentations of 8-functions, Eqs. (5)-(7), into the 8-function 
appearing in Eq. (2), we obtain the final expression for the 
partition function

z=n(打*专k . k知以•腼(•)

Xexp{^ni(r)[l-；誓]+ 计知0")-时 (8)

Here No is an appropriate normalization constant, and the 
quantity JK is given by

冰 =0디K • )}]P디K • )}]exp{-J： (9)

This Jk can be expressed in terms of the distribution func­
tion, Qk(，仰 R) for a chain of r repeat units to start at r0 
and end at r, which can be interpreted as the propagator 
of the inhomogeneous differential equation91324

[场으---쪼 ”*山4이Q(r,티尸0)= 8(尸一部(10)

The function 瓜")can be expressed as the integral of Qk如; 
|r0) over all the starting positions r0, and in this case the 
function qK (r,r) also can be solved from the modified diffu­
sion equation; viz.

一^ 一 쏭寸 + ®K(r)]?K(r,t) = 8(r) (11)

In polymer chains with the length ZKt any segment of length 
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Zkt may be regarded as the origin of two walks, one of le­
ngth and one of length Thus qk&Zk) can be 
written as two distribution functions, i.e., one is 하k(f,Zk。, 
and the other g/d/ZKJc)]:

=0做,Zk) = jdrqf((r,,膈加[尸,ZK(1 - r)] (12)

Free Energy Functional. For large NK, the partition 
function can be written as

Z=■쎄卩dpK • 枷以 . )pn( • )exp{~Fr

디际 •)}, {<*( , )},n( , ；가 (13)

where FT is the total free energy functional in units of kBT, 
given by two terms

月디p/R • )}, (由 • )}, n( • )]=F디Pk( •)}, {球 • )}]

+H디际 •)}, n(・)] (14)

with

F[{pK( •)}, {(Dk( • )}] = 卩卩({pk( • )})-浴伍허〔*(加G)

+ 役[in(씅) -1] (15)

and

H[{px( •)}"】( = 讐-1] (16)

When the free energy Ht associated with the volume change 
locally upon mixing, is subjected to zero, an approximate 
free energy is given by F only, Eq. (15).

Introducing the symmetric form of the potential energy, 
Ukk«% which we can obtain by subtracting the interactions 
between like polymers from I卩畐&―/) in Eq. (4), the inter- 
molecular potential in Eq. (15) is given by

W= 拓 Pok%M+3/J어打 險) Wr，)pK，(/) (17) 

where
Nk=jdrpM (18)

W^jdrWM (19)

When the polymeric system is uniform all over, from Eqs. 
(15) and (17) the local homogeneous free energy density is 
given by

fh = 肋EM(尸)+ 号/ Pk&)Ukk，P^W

where
Ukk? = jdrUKK 心) (21)

In terms of the chemical potential of the pure polymer, Eq.
(20) can be rewritten as 

fh =誹拙伽")+$ '备 Pk(F)Ukk彻(r)+g档？ ln(鷲)j(22) 

where

丽=3側肋成+牙g(■聲')-1] (23)

In terms of the local homogeneous free energy density, Eq.
(17) becomes

"나처隽簣加簣卜 1]} (24)

where the nonlocal terms that are generally negligible10 are 
excluded. Eqs. (14)-(16) and (24) give the free energy func­
tional set that will be minimized by the saddle-point method 
in the next part.

Mean-Field Approximation. Using the saddle-point 
method,913 we can obtain the mean-field equations, given by 
the minimization of the functional, Eq. (14), with respect to 
each d)K(r), pM, and n(r), subject to the constraint of a cons­
tant number of monomers, Eq. (18). The minimization equa­
tion foris given by

險)+筝으蛆 =0 (25)

From Eqs. (9) and (12), in terms of the distribution functions, 
Eq. (25) becomes

px(r) = 쓰-]嘗成, °办(尸, 1-t) (26)

where Jk satisfies the relation Nk/Jk = Pok-13,14 Minimization 
for yields the following equation:

烏一寿n(擊)3*)+ 뽒) -M=。 (27)

where 入x is the Lagrangian multiplier correspoding to, Eq.
(18) , the constraint of a constant number of monomers, and 
the first term is the chemical potential of the polymer K 
In the two asymptotic bulk phases, Eq. (27) becomes

[粉七少n傍)+备小=0 (28)

then the mean field potential in terms of the chemical poten­
tial is given by

g)k(f)=Ahk~步?1卩普)+g(r) (29)

The minimiz가ion equation for the T|(r) is

2團=1 (30)
T Pqk

which makes H=0, Eq. (16), at the saddle point, then F 
only contributes to the free energy of the system. In Eq. 
(29) gif) — [r](r)—Ti^H/pox, which is associated with an incomp­
ressibility, is a function which must be chosen such that 
Eq. (30) is satisfied for all the local points.

The local homogeneous free energy density relative to the 
asymptotic phases is given by
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△/그&-¥險）!사/ (31)

From Eq. (22), Eq. (31) is rewritten as

A/7 po=浴詈似尸）［卩이］— 康］ + 号 /
欢験好）顿（尸）

+溃萼听& (32)

where po is the reference density, <|)kW = PkO*)/Pok is the vo­
lume fraction as the reduced density for no volume change 
upon mixing, and Xkk，= Ukk，PgkPw/Po is the usual Flory inte­
raction parameter with kBT as the unit of energy.

The interfacial tension which characterizes the interface 
is given by

yA=F-々N祯 (33)

where A is the interfacial area, and from Eqs. (15) and (24) 
the free energy is written as

F/po=pr{A/po - {뿌仙川如川) + 쐬2 ln0x(r)]} (34)

where the second term from Eqs. (11) and (26) is given 
by

o)K(r)pK(r)=v Wr 0次(匕 1-r)

―会因聲프 mi)] ㈣

The interfacial tension is then obtained in terms of the free 
energy density of the polymeric system, the conformational 
entropy, and the combinatorial entropy which has relation 
with the degree of polymerization:

yA/po=jdr{Po~S 뿒L*쏭"寸膈，차;)S«，1 一r)}

+J써 g 쁘扌[脚竺띄膈, If
J 1 k po ZkLJ o

-(演)In 侦》]} (36)

Infinite Molecular Weight. For most polymeric sys­
tems the physical properties, in reality, depend on the degree 
of polymerizaiton.318 In here we assume the high molecular 
weights of all the polymers as a good approximation. For 
simplicity, we take Pok=Po, bK=b for all the polymers and 
consider the one-dimensional nature for the interfacial prob­
lem. With these assumptions,81011 all segments take on the 
same density distribution excluding the effects of the chain 
ends, because there is a loss of correlation between segments 
of the polymer chain. As consequence, the distribution func­
tion r) becomes qM- Then volume fraction is given 
by

4>k(x)-^2W (37)

and qK«：) also satisfies the following differential equation

与星礬L—3&M)= 0 (38)
o ax

Centering around the interface, x=0, the Gibbs dividing sur­

face for polymer A, the negative x region is polymer A rich, 
and the positive x one is polymers B and C rich.

@4(一 8)=1,如(一8)=仪(一 8)=0
饥(+8)= 0,饥(+ 8)+ s( + 8)= 1 (39)

The boundary conditions of distribution functions are then 
given in terms of the concentration boundary conditions

如(一°0)=1,如(一8)=如(一8)= 0
如(+。。) = 0,如(+8)=脱拍(+ 3)丁/2, *(+。。)=“疋(+。。)丁/2

(40)

The surface excess in monomers per unit area is usually 
defined as

n/p°= - -如-。。)丑(#)] (4i)

where H(x) is a Heaviside function, H(r)= 1 for x>0 and 
H(r)=0 otherwise, and the mathematical Gibbs dividing sur­
face, x = 0, is justly at I\ —0.

Equation (29), the expression for the polymer mean field 
becomes

®K(r)=△卩k+£(x) (42)

Using the fact that △孑=0 in the asymptotic phases, we can 
obtain the change of chemical potential. The free energy de­
nsity of the A/BC system from Eq. (32) is

A"po=早灿-卩加&) (43)

+ 施飯(#)物化)++Xscx|)B(x)(])c(r)

Using the concentration boundary conditions, the polymer 
mean field for polymer A becomes

g)=[施必)+X4c<t>cWlLi- 涓

- 炫q셰幻 e 시幻+g(%) (44)

and the boundary conditions in two asymptotic phases are

或(一8) = 0
(0a(°o)=+ &讨以8)- /风@8(8)(|杞(8) (45)

For polymer B, the mean field potential is given by

= [x泌一 Xsc<t)c(x)][l-- 시*)(Dc(x)
-沏泌扌(00)+川) (46)

with

(%( 一 8)=彻 一 XbcW*。)
cob(oo) = 0 (47)

and we can also obtain the similar expressions for polymer 
C by interchanging B and C in Eqs. (46) and (47).

Calculation of Physical Properties. Assuming the 
infinite molecular weight for the p이ymers, the third term 
including Zk in Eq. (36) does not contribute to the interfacial 
tension. We then have

Y/P„ = J써△〃"房(穿 )1 (48)

The following equivalent expression10,11,16 is more convenient.

Y/po=2|dxA^zp0 (49) 
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where the free energy density of the A/BC polymeric system, 
Eq. (43), in terms of the asymptotic volume fractions, is rew­
ritten as

A/7po = 施以 (시砂也(幻 + Z4C0X(X)(t>cto + XBC0fi(X)<>C(X)

一新泌如知扌（8）— Xbc4>cW<）b2（00） (50)

The amount of polymer B (as a compatibilizer) in monomers 
per unit area, which is the differential adsorption to the inte­
rface, is given as like Eq. (41) by

rB/p0= f 二况:饥仪)一饥
J -co (51)

As a measure of the thickness of the diffuse interface, we 
define the widths of the polymers as

n _ 귀I*± 8)—M笆)] I 

He ——前庖妇 1孩=。 (52)

where (統)/dk] denotes the value of the derivative eva­
luated at the Gibbs dividing surface for polymer A, and at 
「c=0 for polymer C. In the case of polymer B, 드씨「广。 

is evaluated at rc=0 relative to the Gibbs dividing surface.
A measure of the overlap between the polymers is defined 

as follows
f + co

&K(K=B,C) = 2j d珅A ⑵ eH%) (53)

Numerical Method. For the numerical solutions of Eq. 
(38), first, we discretize the variable x and the mean-field 
equation by using the Numerov's method28

x=(z—7V)Ax, (54)

where x—x/b (in reduced unit of length), the equal discrete 
thickness Ax is a constant, and we write a&) as qW). In 
our numerical calculations we used N=160 and chose Ax—0.
1. For the calculation of the concentration profiles, MO) and 
Qk(320) in Eq. (38) are the boundary conditions of the distri­
bution function. The discretized mean-field equation has the 
following tridiagonal form in

q& -1)+跚)験)+ G&M* +D = 0 (55)

where

[1 +으(△汛*(/)] [1 +京△玖岫 +1)]

Bk0)= _ 2r j—： ； 〒'G&)=p l一2 ； q
[1 —万(Ax)2cok(^ ~1)j [ 1 — 5- (Ax)2g)x(i — l)j

(56)

Solving this equation for 们&) and 土 1) then provides 
a recursion relation for integrating either forward or back­
ward in i, with a local error O E(Ax)6].

We begin with the guess fcr which is chosen as a 
trial function, 0x(0 arctan [exp [02» and we use Eqs. (44)-(47) 
to obtain the initial guess for We then refer 欧。)to 
3이"(z). This determines the cotifficient BkQ) and Ck① in Eq. 
(56). The square matrix of dimension (2N— 1) is easily solved 
by a subroutine TRIDAG29 with the h이p of the boundary 
conditions, Eq. (40). We then obtain a set of qM-

From this set of 仙)，we get the new concentration profile 
0質(z) by using Eq. (37). This e肾P) is controlled such that 
sum of the local volume fractions to be unity. The new mean

x/b
Figure 1. Concentration profiles of polymers A, B, and C with 
削=0.03, X4c=0.1, Xbc= -0.001, and 0s(oo)=O.5 for 나le A/BC 
interface as a reference system. The plane, x/b=d, shows the 
Gibbs dividing surface for polymer A.

field potential广(i) is calculated by using 0當华)and Eqs. 
(44)-(47) again. Here we take the new guess for cd*(O：

(&⑴=就紛+灯以毎)一就华)] (57)

where X is some relaxation parameter, in our calculations 
this is taken to be in the range 0.3 to 1.2. We refer o)x(0 
to G)?%) again, and obtain a set of M), This iteration pro­
cess is continued until the following condition is satisfied

max l<o엉%)-co영%)|丘(~1(厂6) (58)

After convergence, we finally obtain the concentration profile 
血0).

Results and Discussion

Three parameters used in this A/BC polymeric system 
are as follows: &们 Xbc (it must be negative such that allows 
for mixing of B and C), and the volume fraction of polymer 
B in the asymptotic mixture phase,饥(。。). We begin with 
the selection for the reference polymeric system with a rea­
sonable particular set of parameters. Figure 1 shows the con­
centration profiles of polymers (A, B, and C) for an A/BC 
interface as a reference:加=0.03 (we will fix 枷=0.03), 
X4C—0-1, Xbc= —0.001, and <阮(。。)=05 The repulsive intera­
ction between A and C usually drives C away from the inter­
face, and therefore B is easily located in the interfacial re­
gion. When the attractive interaction between B and C is 
not large, in the same way the polymers A and B mainly 
remain near the interface. In Figure 1 we can see the prefe­
rential adsorption of B in the interfacial region in spite of 
the same quantities of B and C in the asymptotic mixture 
phase. This adsorption may improve the interfacial adhesion 
between two polymers A and C.

Effects of Varying /ac- Figures 2-5 show how the re­
pulsion between polymers A and C can modify the physical 
properties of the A/BC interface. In Figure 2 we can see 
the preferential adsorption of B as increasing %ac because 
of the strong repulsive interaction of A and C. As the intera-
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卜

Figure 2. Concentration profiles of polymer B for varying xac 
with Xbc= —0.001 and(J)B(oo)=0.5. The dotted lines indicate a 
reference as in Figure 1.

Xac
Figure 3. Variation of the interfacial tension, in units of 如腿「, 
with Xac for different values of the parameters, Xbc and 饥(°°). 

The solid lines in Figures 3-5 indicate a reference:炫=—0.001 
and 0b(qo)=O.5 

ction parameter X4c approaches to 施 A feels the same deg­
ree of the interaction against B and C, therefore the concent­
ration profiles of B and C nearly remain constant, and there 
is no excess B in the interfacial region regardless of Xbc 
and 0b(oo), as shown in Figure 4. As increasing 必c, C is 
driven away from the overlap with A in the interfacial region, 
then the interfacial tension increases, as shown in Figure 
3. In the case of large x<c (above around 0.1~0.2), C is stro­
ngly repelled from the overlap with A, but on the other hand 
this effect can lead to a preferential adsorption of B to the 
interface. Consequently, the interfacial tension levels off or 
decreases in small, and these curves have the maximum 
points through xac- Then B competes with C against A for 
varying xac and 施.This picture may be seen in such non- 
symmetrical A/BC polymeric systems. Figure 4 shows the 
dependence of the excess B on Xac- For any sets of the 
parameters, the excess B increases throughout, but eventua­
lly the curves level off at some values. In small xbc~ —0.01

Figure 4. Variation of the excess polymer B per unit area, in
units of bp0, with ^ac for the same conditions as in Figure 3.

Xac
Hgure 5. Variation of the overlap lengths between the polymers, 
in units of b, with y^c for the same conditions as in Figure 3.

we can see that the separation of B from C is energetically 
unfavorable. It is interesting that the adsorption of B in 
饥(co) = 0.3 exceeds the case of 饥(°°)=0.6. We will discuss 
more about the behavior at small and large <棚(。。)below. 
Figure 5 shows the measure of the overlaps between the 
polymers. increases more rapidly at large 饥(。。)and 彻?, 

and then LAC naturally decreases. In large 施，the overlap 
lengths nearly remain constant through above around 0.15 
because of the increasing B adsorption, as the interfacial 
tension lev시s off in Figure 3.

Effects of Varying 0b(co). In the interfaces between 
two immiscible polymers, the role of compatibilizers is ex­
ceedingly important. Figures 6-10 show how the polymer B 
as a compatibilizer can modify the interfacial properties of 
the A/BC system. Figure 6 shows that even if the amount 
of B in the BC mixture is small, that can lead to a considera­
ble adsorption of B to the interface and consequent modifica­
tion of the interfacial properties. In large 饥(。。)，the concent­
ration profiles in the right of the interface become flat gra­
dually and the interfacial region becomes thick, and on the 
contrary the excess B decreases. In Figure 7 the interfacial
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x/b
Figure 6. Concentration profiles of polymer B for varying 0b(qo) 
with X4c=0.1 and xbc— -0.001. The dotted lines indicate a refe­
rence as in Figure 1.

和（8）

Hgure 8. Variation of the excess polymer B per unit area, in 
units of bp。, with 0B(oo) for the same conditions as in Figure
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Figure 9. Variation of the width of polymer B, in units of b, 
with 0B(oo) for the same conditions as in Figure 7.

Figure 7. Variation of the interfacial tension, in uits of 
with 0fl(co) for different values of the parameters, xac and %bc. 
The solid lines in Figures 8-10 indicate a reference: xac=01 
and Xbc= —0.001.

tension rapidly decreases for all sets of parameters. The dec­
reasing effect of the interfacial tension by the adsorption 
of B improves the interfacial adhesion between two phases, 
and then slows the demixing pi'ocess of the polymeric pha­
ses. For very small (阮(。。)[nearly zero] all curves approach 
to the values for the A/C binary system, and(J)b(oo) goes 
to one all curves also approach to the binary A/B. In the 
case of a solid line, 丫/po如7、= 0.0845 and 0.0463 for the A/C 
and A/B binary systems, respectively. Figure 8 shows the 
dependence of the excess B upon 0B(oo). At the limits of 
你0。—。and 1, the excess B is very small but not zero, 
the maximum points appear in the range of 0.3 and 0.7. This 
result is because the amount of B adsorbed to the interface 
is estimated by the amount of B in the interfacial region 
and the relative one for polymer B in the asymptotic mixture 
phase, as in Figure 6 and Eq. (51). Figure 9 아lows 나le width 
of B plotted against 饥. In 如«。)~스1 limit (nearly pure B), 
i.e., in the absence of polymer C we can not compare the 

width of B in the A/BC with the one in the A/B system. 
There is no meaning in this case, then we can only deal 
with the overlap between A and B or A and C, a도 in Figure 
10. When X4C is large and \^bc\ small, the overlap length 
between A and B is large, and consequently this affects the 
interfacial tension. At the limit of 饥(。。)—1 or 0, the overlap 
between the polymers becomes that of the A/B or A/C binary 
polymeric system.

Concluding Remarks

In this paper by solving the mean-field equations numeri­
cally for the A/BC system in the limit of infinite molecular 
weight for the polymers, we obtained the concentration profi­
les, the interfacial tension, the width of polymer B, the 
amount of polymer B adsorbed to the interface, and the ove­
rlap lengths between the polymers for various typical values 
of two Flory interaction parameters, 乂冬 and 炫，and the 
volume fraction of B in the asymptotic phase,饥(8).
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0>B(。。)

Figure 10. Variation of the overlap lengths between the poly­
mers, in units of b, with 0B(co) for the same conditions as in 
Figure 7.

Increasing y^c repels the polymer C from the interfacial 
region, consequently it leads to the preferential adsorption 
of B to the interface, the increasing of the overlap between 
A and B, and the interfacial tension (in the case of large 
Xac, the interfacial tension levels off or decreases in small). 
Increasing |彻| has the opposite effect to X4c in the excess 
polymer B and the overlap between A and B, however the 
interfacial tension increases through \y^c\ over all, even if 
not shown in this paper.

Even small amounts of polymer B as a compatibilizer in 
the asymptotic mixture phase can modify the physical prope­
rties of the interface. As increasing 饥(。。)，the interfacial 
tension reduces, the overlap of the polymers A and B increa­
ses, and the width of polymer B increases. However, the 
adsorption of polymer B to the interface first increases and 
then decreases through(|)b(oo). When 饥«q)tO the system 
goes to the binary A/C, and ObS—I the A/B binary poly­
meric system.
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