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Digital simulation program for one-dimensional geometric systems of electrochemical phenomena was developed. The 

accuracy of the digital simulation is discussed by comparing with the known solutions. Applying this program to 

the linear sweep voltammetry at a planar electrode for the electrode reaction, 0+mR, the accurate current functions 

for the reversible and totally irreversible charge transfer systems were obtained. Comparing these current functions 

with the simulated voltammograms for various other values of a (0.1 to 1.0) and A (IO-5 to 105), the revised zones 

that are different from those proposed by Matsuda and Ayabe for the reversible and totally irreversible systems 

are proposed. For a^O.l, the reversible zone is in A^IO17 and the totally irreversible zone is in A^IO-17, where 

A = ko/LD0l-aD^(nF/RT)v^2.

Introduction

The Fick's first law. of flux and the mass conservation 

law, instead of the differential ecuations of the Fick's second 

law, can be easily implanted into a computer code to obtain 

the dynamic currents for complex electrochemical pheno­

mena in any geometries. This method is called as the digital 

simulation1 that should be distinguished from the numerical 

calculation to solve the integro-differential equations or the 

serial form of analytical solutions. Except a few cases of elec­

trochemical diffusion problem2, the analytical solutions for 

the differential equations representing the Fick's second law 

cannot be obtained with ease. Even the analytical solution 

is available, it might be the serial form of integral function옹 

like Bessel functions3, so that ths tedious numerical calcula­

tion hinders the access to the accurate real numerical values. 

Then, digital simulation method is preferred because of de­

touring the mathematical complexity as well as less computer 

calculation time. To decrease the simulation time but not 

to sacrifice the accuracy, the various techniques were de­

veloped. Among them, the exponentially expanding space 

grid4-5 and the Crank-Nicholson method16 were employed in 

this work. In the simulation of chronoamperometry, the ex­

ponentially expanding time grid was also employed success­

fully.

In this report, the simplest electrode reaction, O+ne-*R, 

at a planar electrode is considered to focus on the accuracy 

of the simulation. This will provides firm base to leap into 

the more complex problems, for example, the complex elect­

rode reactions at the various geometric systems of planar, 

동pherical, cylindrical, disk, multiple bands, and ring electrode 

systems. Primarily, the accuracy of the simulation was chec­

ked by comparing with the analytical solution of diffusion 

controlled chronoamperometric current응, i.e., Cottrell equa­

tion, at a planar electrode. In case of linear sweep voltamme­

try, assuming the true peak current can be obtained by the 

infinite number of space grids and potential step grids, the 

true peak current can be obtained by extrapolating the bili­

nearly changing peak current values depending on the 

square of the space grid size and the square of the potential 

step size. Secondarily, the current functions of the reversible 

and totally irreversible systems for the linear sweep volta­

mmetry at a planar electrode were also compared with that 

of Nicholson and Shain7 or Suzuki8. Since the current func­

tions of this work are believed to be more accurate, the 

revised tables of these functions are presented. Finally, the 

voltammograms for various values of a (0.1 to 1.0) and A 

(10~5 to 105) are obtained to compare with these two current 

functions. The voltammogram of specific value of a and A 

is compared with those of above tabulated functions. If the 

deviations from the current function of the reversible system 

or that of the totally irreversible system in all the simulated 

potential range are same in 1% error range, then that a 

and A value is included in the reversible system or the 

totally irreversible system. In this way, two distinctive zone옹 

are obtained as A>1017 for the reversible system and A 

10 t 7 for the totally irreversible system. These are different 

from those proposed by Matsuda and Ayabe9, where A215
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Axn-i Axn
XN-2 XN-I XN

XCN-2 XCN XCN*1

Axcn-1 AxcnAxcj Axcj.I

Hgure 1. Space grid indexing.

for the reversible system and A^10-2(1+a) for the totally ir­

reversible system.

Method

Review of Fick's laws. Fick's first law2 states that the 

flux of species i in fluid state is proportional to the concent­

ration gradient of species i. But, Fick's first law cannot be 

used to explain the migrational effect, ie, the flux of ionic 

species by the electrical field. The more general statement 

of flux law, which satisfies Fick's first law and considers 

migration and convection, is that the flux of species i in 

fluid state is proportional to the impressed force10. But, in 

this work, the first statement was employed for the simple 

situation where the migrational effect is negligible, the acti­

vity coefficients of all electroactive species are 1, and the 

convection of fluid is negligible.

For the symbolic representation of Fick's first law, the 

clearly defined notations of the space and time grid are use­

ful. Especially, the space grid indexing as shown in Figure 

1 is critical for the computer coding of nonlinear space grid 

as described later. The x;-i is for the location of left plane 

of box 8V；. The x} is for the location of right plane of box 

8匕.The difference between Xj and is defined as Ax?. 

This is a typical gridding found in many monographs1,11. 

Here, x0 is the location of electrode surface and ■珈 can be 

the semi-infinite distance from the electrode or the location 

of another electrode in thin layer cell system. In this work, 

it is thought that the clearly defined extra indexing symbols 

are not harmful for the simplicity of digital simulation. That 

is xq which represents the center location in box 泌 i.e., 

务—i)/2. For the future purpose, xc0 is considered 

as a center of volume element (SR0) of negligible size at 

the electrode 동urface. Similarly, xcN+i is considered as a cen­

ter of volume element (8Kv+i) of negligible size. Because 

of of negligible volume size, xc0—and jccn+i=Xn・ Note that 

xcN+i is not same as xcN. Similar time gridding was used, 

认 tk 伙 = 0,1,…,L), Me 야!=1,2,…,L), tck (力 = 0,1,…,L+l), 

and Atck Q=0,l,…，乙)where to is the initial time and h 

is the final time.

In digital simulation, the average currents hetero­

geneous electron transfer rates) at an electrode surface in 

given time intervals and the average concentrations of all 

electroactive species in discretized volumes 6匕。二二1,2,…,TV) 

are aimed to be solved instead of the analytical current func­

tion of t and the continuous concentration function of x and 

t.

From Fick's first law, the flux of species i through a plane 

of unit area at a location x} at a time h, symbolized as / 

3, "), can be approximated as follows.

J縞,tk)= -AEGCxCj+1, 切]/△的 (1)

where 以 is the diffusion coefficient of species i and the 

Ci^cq, tk~i) is the average concentration of species i in 8匕. 

The above equation is simply a finite difference form of the 

well-known equation,

J*, /)= -Di dC故,t)/dx (2)

The schemes in which the average flux of species i through 

a plane at x, during tk and 心i, symbolized as 厶(笏,t血+、), 
is assumed to be same as JK&, 4),

4/4+1)=—tky]/AxCj (3)

are called fully explicit or the FTSC representation (forward 

time centered space)12. In other words, in an explicit method, 

only the concentrations of old time t由 are used to represent 

the average flux between old time tk and new time On 

the other hand, in a fully implicit method, only the concent­

rations of new time 妇 are used as follows.

攻,^+i)--ALG(xg+i, 4+i) — CC的，4+i)]/△的(4)

While a fully implicit method is stable for arbitrarily large 

timesteps, a fully explicit method is stable only for sufficient­

ly small timesteps. In general, tk/tk+i) can be approxima­

ted by mixing these two methods, i.e.r

ZS，"如 i) 드(1一0)/S，4) 十 0/S，4+i) (5)

where 0<G^l. The methods using 0—1/2 and 2/3 are res­

pectively called as the Crank-Nicholson method and the Ga- 

lerkin method. Both methods are still unconditionally stable6,12. 

In this work, the Crank-Nicholson method is used throughout 

all the digital simulation for the stability and the accuracy12.

The Fick's second law can be easily understood from the 

consideration of the n니mber of species i in 8% (8% =4 Ax； 

and A is the side area of a box).

(Change of Number of species i in 8V； for time interval 

between tk and 4十。

=Gg tk+l) 纳,tk) 8V；

=—(outflux of species i to right side during tk and 4+i) 

+ (influx of species i from left side during tk and 龙+i)

=伽,tk/h+i) A △4+£免一1, tk/tk+\) A A/* (6)

Dividing by 8 匕，

C(的，tk) — Cg,妃 i)=

一[王免，tk/tk^i)]A/t/Ax； (7)

or



Revised Reversible and Irre昭sibh? Zones

[CQcCj, tQ — Cg ^-i)]/A^ =

-〔/网，一丄«]一、4/4-1)]/△勾 (8)

The combined equation of (1) 교nd (8) is a finite difference 

form of the well-known differential equation for Fick's second 

law, i.e.,

dCjQc, t、)/dt= —dj*, t)/c!x~Dl (/G(x, t)/dx2). (9)

Among the above equations, only three simple and elemen­

tary Eqs. (1), (5), and (7) are used in digital simulation ins­

tead of a final differential Eq. (9) itself. The similar discus­

sion for heat conduction problem is well described in the 

physics textbook13. The difference is that, in mass transfer 

case, the concentrations of multiple species are to be solved 

instead of one physical variable, i.e., temperature. More im­

portantly, the boundary condition is distinctively different.

Boundary Flux. The flux of species i at x}…， 

N— 1) can be solved by Eq. (1) described as above. The 

fluxes at xn can be considered as zero when the concentra­

tions in 8卩村 is not perturbed by letting xN as semi-infinite 

distance away2, x^= 10 (Z사 in this work, from the elect­

rode surface where the perturbation begins. Here DF means 

the largest diffusion coefficient among those of all electroac­

tive species. Then, one thing left to be formulated is boun­

dary flux11 at the electrode surface. Considering the elect­

rode reaction, O+ne->R, the oxidized species (0) near the 

electrode surface obtains n elecirons in the rate of kf Cq^ccq, 

tk) from the chemically inert and conducting electrode to 

become other species (R). Likewise, backward reaction, R 

—ne~^0, is occurred at the e.ectrode surface at the rate 

of kb G心0 tk). Since the oxidized species is disappeared 

by forward reaction and generated by backward reaction,

JoQco, 4)=一切(4) Co(rc0, tk)+kb(tk) G«0, 4) (10)

Apparently, the fluxes of the electro-inactive species are zero 

simply because the mass flow is blocked. In a simple redox 

reaction which is considered in :his work, only two electroac­

tive species (0 and R) change their oxidation states and 

their fluxes at the electrode surface can be nonzero by hetero­

geneous reaction. But, since the chemical species cannot 

actually disappear into the electrode surface though the oxi­

dation states of species are changed, total flux of chemical 

species at the electrode surface, J0QcGf tk) 4), should 

be zero. This is the flux balance equation.

J0(xQ,圮二一Jr«» tk) (11)

Since the negative flux (flux toward the electrode) of oxidi­

zed species is caused by the flux of electron from the elect­

rode surface, the current flow through the electrode is

I=—nFAg tk) (12)

where n electrons per an oxidized species are needed.

Though the 4) and tk) are caused by the hetero­

geneous electron transfer, the mass transfers between the 

center of 8Vi and 8Vo are restricted by Fick's first law, i.e.,

Jog, 4)=—D°[G8ci, Q—Ghco, Q]/Axco (13)

Jr3), tk)= 梢一CrSo, ^)]/Arco (14)

From (10), (13), and (14),
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GSh 4)+人ho, 요cJDr (15)

C血0, tk) = C血 1, tk) -7«(Xo, tQ2(시Dr (16)

From (15) and (16), Eq. (10) becomes

•偈,tk)= -kj(tk) [CW1,圮十/爲，t*心DC\

+尾(4) [c에絃 1, h)-人^AxCo/Dr] (17)

Rearranging (17),

•시*0, 厶)=[一奴4) C0(xcb H)+kAtO tk)l

/[ 1 丄 kjffk)^xco/DR+旧沁心/时 (18)

Here, the heterogeneous kinetic constants k偽)and 电，(4) 

are functions of electrode potential, E(4), which changes li­

nearly in the linear sweep voltammetry. For the relationship 

between kinetic constants and electrode potential, Butler- 

Volmer2 kinetic model was used in this work.

W=^° exp[-a(?z矽缶) (E0)—E아)] • (19)

岫=k。e^(l~a)(nF/RT) 応(幻一£이)] (20)

where a is called the transfer coefficient, k° is the intrinsic 

heterogeneous kinetic constant, and EQ, is the formal poten­

tial for O+ne^R. From (18) along with (19) and (20), the 

boundary flux at the electrode surface can be solved.

Matrix equation. From (1), (5), (7) and (18), the con­

centrations at h+i can be solved by the concentrations at 圮 
For the fully explicit method, the resulting matrix equation 

as shown below is easy to solve because the matrix inversion 

process is not necessary. A 2NX2N matrix D0) is a 5 baqd 

diagonal matrix and a function of known variables, Dot Dr, 

"H), Axe；, and M.

or briefly

(址 C(tk) (22)

But, in the Crank-Nicholson method, the resulting matrix 

equation

C(4+i)=〃(h) C(tk) (23)

has a matrix at the left hand side, so the matrix inversion 

process is necessary. Again, D(4), and D(tk+i) are 5 band 

diagonal matrixes and functions of known variables, DOf Dr, 

林心 kbdk),奴4+i),扇(厶+i), Arc；, and Atk. The efficient matrix 

inversion routine12 in C-language was used. The computer 

code for Eq. (23) is constructed by C-language and compiled 

by Turbo-C 3.0. Once C(/fc+i) (concentrations at tk+i)治 sol­

ved, then the average flux and current during 4 and tk+\ 

can be calculated by Eq. (5) and (12).

Exponentially expanding grid. The exponential algo-
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Figure 3. Digital simulation error in the linear sweep voltamme­

try of reversible charge transfer system.
Figure 2. Digital simulation error in chronoamperometry.
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rithm which was developed by Joslin and Pletcher4 and refin­

ed by Feldberg5 was employed to generate the nonlinear 

space and time grids, i.e.t

Axi expCpO —1)] (24)

or

Xj=Axi [exp(附—1]/Lexp(p)-1] (25)

But, in this work, the method was modified to vary the num­

ber of grids, not the exponential factor & From the nonlinear 

Eq. (25), p was solved by given values of x.v, and N. 

Once p is solved, Ax； 為…,NT), xq=

S+为—1)/2 G=1Z…,N), and 再=0丄…,N)

can be solved immediately. In this way, the nonlinear space 

grid can be explicitly defined by only three input variables,

1. e., Axif Xn, and N. Similarly, the nonlinear time grid also 

can be explicitly defined by M, tL, and L.

Results and Discussion

Error analysis of chronoamperometry. Using the C- 

language program based on the previous section, a diffusion 

controlled chronoamperometric curve was simulated and com­

pared with the Cottrell equation. The simulation variables 

in MKS units were Do=DR=10^ m2/sect Axi = 5X10-9 m, 

Xn=1X10-2 m, N= 128, Afi = 1.25X10-8 sec, = 1X103 sec, 

£=128, E—E히 =一1.0 V, = m/sec( C*— 1 mol/m3, 

Cje*=O mol/m3, n = l, and 298.15 K, where C* is the 

bulk concentration of species i. Note that DM=QM/(U 

<0.5. The relative errors versus time are shown in Figure

2. In a wide range of time (10-5 sec to 103 sec), the error 

is less than 0.08%. Considering that the execution time was 

13 sec in 486-DX PC computer, it is proved that the nonli­

near gridding method which is employed in this work is 

very efficient and accurate.

Current function of the reversible system. Using 

the same program, the linear sweep voltammetric response 

was simulated by the linearly changing electrode potential 

with the scan rate v. But, instead of nonlinear time grid, 

the linear time grid (therefore the linear electrode potential 

grid) was used in this case. Not like the Cottrell equation 

for the chronoamperometry, the analytical solution for the 

linear sweep voltammetry is integral form7,8 which should 

be numerically solved and usually represented by the nume­

rical table form.

For the discussion of general quasi-reversible kinetics, the 

dimensionless kinetic parameter9 A=Ze0/^1 1/2

and the current function9 ~\/[nFAC*D^!2()ynF/RT^l2~\ are 

employed. The reversible and totally irreversible systems 

are the limiting cases of the general quasi-reversible system. 

If k° (or A') approaches to infinite, the term on the left-hand 

side of Eq. (10) is negligible compared to the individual te­

rms on 하le right side. From Eqs. (10), (19)t and (20), the 

Nernst equation for the reversible system is resulted, 

》/G?(爲,此)=exp[(灌次7) (E(4) —E°')丄 To simulate the rever­

sible system, a new program based on this Dirichlet boun­

dary condition12 can be constructed. In this work, simply a 

huge number, 1012, was used for A in the general quasi-rever­

sible kinetics system program. It can be increased more 

as long as the numerical value can be accepted by the com­

puter program and does not lead to out-of-range number 

during the computation. The value, 1012, is more than enough 

considering that even smaller A= 103 well describes the re­

versible system9. This value can be handled without difficulty 

in the double precision program which allows the value upto 

1.7 X10308.

To check the accuracy of the simulated result, it is accept­

ed as a true statement that the simulated result approaches 

to a true peak current value by increasing the grid number 

and the potential grid to infinite number. The peak values 

of the simulated current function ^sim are shown in Figure

3. It turns out to be that the digital error is bilinear to the 

inverse square of the number of space grid and the square 

of the potential step size. The asymptotic value of the peak 

value of current function ¥ (or V祕(at)), 0.44630, is 아le ac­

cepted true value. By this accepted true value, the digital 

error is 0.004% for N= 512 and AE = 1 mV. Therefore, upto 

5 digits of the current function values which are tabulated 

in Table 1 are believed to be significant.

Current function of totally irreversible system.
Exactly same strategy as used in the case of reversible sys­

tem was used to obtain the current function of the totally 

irreversible system, using a=0.5 and A=10-4. The correc­

ted current function7,9 %打(Wg=W/、/S=\Vc(bt)) versus
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Table 1. Current function 售=、/규/(at)) values for reversible 

charge transfer

n(E-E^,

mV

Current function values

Ref. 7 Ref. 8 This work

120 0.009 0.0091 0.00925

100 0.020 0.0197 0.01983

80 0.042 0.0416 0.04180

60 0.084 0.0847 0.08496

50 0.117 0.1180 0.11833

45 0.138 0.1382 0.13849

40 0.160 0.1607 0.16100

35 0.185 0.1855 0.18576

30 0.211 0.2122 0.21251

25 0.240 0.2405 0.24081

20 0.269 0.2698 0.27007

15 0.298 0.2993 0.29952

10 0.328 0.3281 0.32829

5 0.355 0.3553 0.35544

0 0.380 0.3800 0.38007

-5 0.400 0.4013 0.40139

-10 0.418 0.4187 0.41880

-15 0.432 0.4319 0.43196

一 20 0.441 0.4408 0.44076

-25 0.445 0.4453 0.44536

一 28.5 0.4463 0.4463 0.44625

-30 0.446 0.4461 0.44610

-35 0.443 0.4435 0.44346

-40 0.438 0.4380 0.43800

-50 0.421 0.4210 0.42095

-60 0.399 0.3991 0.39916

一 80 0.353 0.3528 0.35295

-100 0.312 0.3123 0.31242

-120 0.280 0.2800 0.28021

-150 0.245 0.2447 0.24487

Table 2. Corrected current function 0 

lues for irreversible charge transfer

K”=W/\/Av每(bt)) va-

Eoe mV Corrected current function

(see text) Ref. 7 This work

160 0.003 0.00349

140 0.008 0.00756

120 0.016 0.01633

110 0.024 0.02391

100 0.035 0.03489

90 0.050 0.05062

80 0.073 0.07289

70 0.104 0.10377

60 0.145 0.14536

50 0.199 0.19906

40 0.264 0.26422

35 0.303 0.29993

30 0.337 0.33648

25 0.372 0.37256

20 0.406 0.40661

15 0.437 0.43695

10 0.462 0.46200

5 0.480 0.48051

0 0.492 0.49177

-5 0.496 0.49573

一 5.34 0.4958 0.49575

-10 0.493 0.49300

-15 0.485 0.48469

-20 0.472 0.47220

-25 0.457 0.45695

-30 0.441 0.44020

-35 0.423 0.42294

-40 0.406 0.40591

-50 0.374 0.37411

-70 0.323 0.32293

Figure 4. 以Q，) dependency of the linear sweep v사tammet- 

ric curves for a=0.7 and log A= —0.5. (A) T vs w(E—E1/2); 

log Q)r/D°)=L0, 0.5, 0, 一 0.5, and 1.0 from left to right. (B) 

W vs n(E—E曲;5 voltammograms of (A) are folded together. 

Eu2=EO' + (RT/此F)

the corrected potential7 Ecorr (£5=(E — Ew)an + (RT/F) In 

((7^)oa(nF/RT)\))lf2/k°)) is tabulated in Table 2. The accepted 

true value of peak *旳 is 0.49580.

Potential shift by DO/DR9. In general, the potential of 

the current functions even for the quasi-reversible systems 

is shifted by the amount of (RT/nF) ln(Dj?/A)1/2 as shown 

in Figure 4, Therefore, in Table 1 and 2, Ei/2=Eot + (JiT/nF) 

EDr/D产 was used instead of E히 for general case of 

DJDr 丰 1.
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n(E-E。')/ Volt
Figure 5. Linear sweep voltammetric curves for a=0.5. Solid 

lines (一); digital simulation curve for log A =1.5, 0.5, —0.5, 

L5, 2.5, and 3.5 from left to right. Open circle (O); current func­

tion of reversible charge transfer system. Closed cir이e (•); cur­

rent function of totally irreversible charge transfer system.

n(E-E°) / Volt
Rgure 6. Linear sweep v이tammetxic curves for a=0.1. Solid 

lines (一); digital sim니ation curve for log A=1.7 (upper) and 

1.2 (lower). Open circle (O); current function of reversible charge 

transfer system.

Zones for reversible and totally irreversible system.
Since the accurate current functions of the reversible and 

totally irreversible systems are obtained, it is a matter of 

iteration to find whether the simulated voltammogram for 

various a and A is similar to one of this system or not. 

To reduce the time for the simulations of all possible case 

of a and A, the less sparse grid parameters, N—128 and 

AE—2 mV, were used. For this gridding, in Figure 2, the 

error is 0.07% for the reversible systems and similarly 0.07% 

for the irreversible systems. Therefore, for the arbitrary a 

and A, the digital error is less 나lan 0.07%. This error is 

more than enough to check whether the simulated volt­

ammogram is deviated 1% from the tabulated current func­

tions.

Typical voltammograms are shown in Figure 5, for a=0.5 

and various log A = 1.5, 0.5, —0.5, 1.5, 2.5, and 3.5. For log 

n(E-E。')/ Volt
Figure 7. Linear sweep voltammetric curves for log A — —1.7. 

Solid lines (——);digital simulation curve for a—1.0, 0.8, 0.6, 0.4, 

and 0.2 from left to right. Closed circle (•); current function 

of totally irreversible charge transfer system.

Figure 8. Zones of the reversible and totally irreversible sys­

tems for the linear sweep voltammetry at a planar electrode. 

Open circle (O); error of 1% over. Closed circle (•); error of 

1% or less.

으
 q
E
 으

成
K

A=L5, it is exactly same as the reversible function (open 

circles). For log A =1.5, 2.5, and 3.5, those are exactly same 

as the irreversible current function (filled circle). But, log 

A = 0.5 and —0.5, none of the tabulated current functions 

is not fitted. It is categorized as a quasi-reversible system. 

According to Matsuda and Ayabe9, the reversible system is 

defined as A>15 for any a. But, as shown in Figure 6, the 

simulated voltammogram for A = 1012 = 15.85 and q=0.1, the 

deviation of peak current is 4%. In the criterion for this 

report, it is quasi-reversible.

Typical irreversible voltammograms for log A= —1.7 and 

various a=1.0, 0.8, 0.6, 0.4, and 0.2, are shown in Figure 

7. All the curves are same as the irreversible current func­

tion (filled circle). According to Matsuda and Ayabe, none 

of these cases is irreversible system (log A< —2(l + a)). In­

consistency is evident because the larger error range (4% 

for over) is allowed for the reversible system, but the very 
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restricted error range (less than 1%) is allowed for the irre­

versible system. Therefore, the revised criterions have to 

be proposed in the practical point of view.

In Figure 8, the numerous voltammograms are checked 

to figure out the zones for the reversible system and the 

irreversible system for the linear sweep voltammetry. From 

this figure, it is proposed tliat for l>a^0.1, the reversible 

zone is in and the totally irreversible zone is in

A<10-L7.

Conclusion

The accurate and efficient digital simulation program for 

one-dimensional electrocheir ical phenomena was developed. 

It is demonstrated that the <ligital simulation program based 

on the combined algorithm of the Crank-Nicholson scheme 

and the exponentially expanding grids is very accurate and 

efficient for the simulation ctf chronoamperometry. Applying 

this to the linear sweep voltammetry at a planar electrode 

for the electrode reaction, ()+mR, the accurate current 

functions for the reversible and totally irreversible hetero­

geneous electron transfer systems were obtained. The volta­

mmograms of all the range of a (0.1 to 1.0) and A (10*5 

to 105) are compared with the current functions of the rever­

sible system and the totally irreversible system. If the devia­

tions from the current function of the reversible system or 

that of the totally irreversitde system in all the simulated 

potential range are same ir 1% error range, then that a 

and A value is included in the reversible system or the 

totally irreversible system. In this way, the values of a and 

A for the reversible system and the totally irreversible sys­

tem are collected to find the zones. In result, the reversible 

zone is in A>1017 and the totally irreversible zone is in 

A<1017 for l^a>0.1.
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