Synth. Commun. 1992 22, 214.
10. Karabatsos, G. J.; Hsi, N. Tetrahedron 1967, 23, 1079.
11. (a) Knorr, R.; Weiss, A.; Low, P.; Rapple, E. Chem. Ber. 1984, 113, 2462; (b) Montgomery, F. C.; Saunders, Jr., W. H. J. Org. Chem. 1976, 41, 2368; (c) Knorr, R. Chem. Ber. 1980 113, 2441; (d) Smith, J. K.; Bergbreiter, D. E.; Newcomb, M. J. Am. Chem. Soc. 1983, 105, 4396; (e) Guthrie, R. D.; Burdon, L. G.; Lovell, Jr. F. L. J. Org.

Chem. 1973, 38, 3114.
12. $\mathrm{MTPA}=\alpha$-Methoxy- α-(trifluoromethyl)phenylacetic acid: Brown. H. C.; Kim, K-W.; Cole, T. E.; Singaram, B. J. Am. Chem. Soc. 1986, 108; 6761.
13. Brown, H. C.; Kramer, G. W.; Levy, A. B.; Midland, M. M. Organic Synthesis via Organoboranes; Wliley Interscience: New York, 1975; chapter 9.

Revised Reversible and Totally Irreversible Zones for the Linear Sweep Voltammetry at a Planar Electrode

Juhyoun Kwak*
*Department of Chemistry, Korea Advanced Institute of Science and Technology, Taejon 305.701
Received September 1, 1993

Abstract

Digital simulation program for one-dimensional geometric systems of electrochemical phenomena was developed. The accuracy of the digital simulation is discussed by comparing with the known solutions. Applying this program to the linear sweep voltammetry at a planar electrode for the electrode reaction, $\mathbf{O}+\mathrm{ne} \rightarrow \mathbf{R}$, the accurate current functions for the reversible and totally irreversible charge transfer systems were obtained. Comparing these current functions with the simulated voltammograms for various other values of $\alpha(0.1$ to 1.0$)$ and $\Lambda\left(10^{-5}\right.$ to $\left.10^{5}\right)$, the revised zones that are different from those proposed by Matsuda and Ayabe for the reversible and totally irreversible systems are proposed. For $\alpha \geq 0.1$, the reversible zone is in $\Lambda \geq 10^{1.7}$ and the totally irreversible zone is in $\Lambda \leq 10^{-17}$, where $\Lambda=k^{\circ} /\left[D_{0}{ }^{1-a} D_{k}{ }^{a}(n F / R T) v\right]^{1 / 2}$.

Introduction

The Fick's first law. of flux and the mass conservation law, instead of the differential ecuations of the Fick's second law, can be easily implanted into a computer code to obtain the dynamic currents for complex electrochemical phenomena in any geometries. This method is called as the digital simulation ${ }^{1}$ that should be distinguished from the numerical calculation to solve the integro-differential equations or the serial form of analytical solutions. Except a few cases of electrochemical diffusion problem ${ }^{2}$, the analytical solutions for the differential equations representing the Fick's second law cannot be obtained with ease. Even the analytical solution is available, it might be the serial form of integral functions like Bessel functions ${ }^{3}$, so that the tedious numerical calculation hinders the access to the accurate real numerical values. Then, digital simulation method is preferred because of detouring the mathematical complexity as well as less computer calculation time. To decrease the simulation time but not to sacrifice the accuracy, the various techniques were developed. Among them, the exponentialty expanding space grid $^{4.5}$ and the Crank-Nicholson method ${ }^{1.6}$ were employed in this work. In the simulation of chronoamperometry, the exponentially expanding time grid was also employed successfully.

In this report, the simplest electrode reaction, $\mathrm{O}+$ ne $\rightarrow \mathrm{R}$, at a planar electrode is considered to focus on the accuracy of the simulation. This will provides firm base to leap into the more complex problems, for example, the complex elect-
rode reactions at the various geometric systems of planar, spherical, cylindrical, disk, multiple bands, and ring electrode systems. Primarily, the accuracy of the simulation was checked by comparing with the analytical solution of diffusion controlled chronoamperometric currents, i.e., Cottrell equation, at a planar electrode. In case of linear sweep voltammetry, assuming the true peak current can be obtained by the infinite number of space grids and potential step grids, the true peak current can be obtained by extrapolating the bilinearly changing peak current values depending on the square of the space grid size and the square of the potential step size. Secondarily, the current functions of the reversible and totally irreversible systems for the linear sweep voltammetry at a planar electrode were also compared with that of Nicholson and Shain ${ }^{7}$ or Suzuki ${ }^{8}$. Since the current functions of this work are believed to be more accurate, the revised tables of these functions are presented. Finally, the voltammograms for various values of $\alpha(0.1$ to 1.0$)$ and Λ (10^{-5} to 10^{5}) are obtained to compare with these two current functions. The voltammogram of specific value of α and Λ is compared with those of above tabulated functions. If the deviations from the current function of the reversible system or that of the totally irreversible system in all the simulated potential range are same in 1% error range, then that a and Λ value is included in the reversible system or the totally irreversible system. In this way, two distinctive zones are obtained as $\Lambda \geq 10^{1.7}$ for the reversible system and Λ $10^{-1.7}$ for the totally irreversible system. These are different from those proposed by Matsuda and Ayabe9, where $\Lambda \geq 15$

Figure 1. Space grid indexing.
for the reversible system and $\Lambda \leq 10^{-2(1+\alpha)}$ for the totally irreversible system.

Method

Review of Fick's laws. Fick's first law ${ }^{2}$ states that the flux of species i in fluid state is proportional to the concentration gradient of species i. But, Fick's first law cannot be used to explain the migrational effect, i.e., the flux of ionic species by the electrical field. The more general statement of flux law, which satisfies Fick's first law and considers migration and convection, is that the flux of species i in fluid state is proportional to the impressed force ${ }^{10}$. But, in this work, the first statement was employed for the simple situation where the migrational effect is negligible, the activity coefficients of all electroactive species are 1 , and the convection of fluid is negligible.
For the symbolic representation of Fick's first law, the clearly defined notations of the space and time grid are useful. Especially, the space grid indexing as shown in Figure 1 is critical for the computer coding of nonlinear space grid as described later. The x_{j-1} is for the location of left plane of box δV_{j}. The x_{j} is for the location of right plane of box δV_{j}. The difference between x_{j} and x_{j-1} is defined as Δx_{j}. This is a typical gridding found in many monographs ${ }^{1.11}$. Here, x_{0} is the location of electrode surface and x_{N} can be the semi-infinite distance from the electrode or the location of another electrode in thin layer cell system. In this work, it is thought that the clearly defined extra indexing symbols are not harmful for the simplicity of digital simulation. That is $x c$, which represents the center location in box δV_{j}, i.e., $x c_{j}=\left(x_{j}+x_{j-1}\right) / 2$. For the future purpose, $x c_{0}$ is considered as a center of volume element (δV_{0}) of negligible size at the electrode surface. Similarly, $x c_{N+1}$ is considered as a center of volume element (δV_{N+1}) of negligible size. Because of of negligible volume size, $x c_{0}=x_{0}$ and $x c_{N+1}=x_{N}$. Note that $x x_{N+1}$ is not same as $x c_{N}$. Similar time gridding was used, i.e., $t_{k}(k=0,1, \cdots, L), \Delta t_{k}(k=1,2, \cdots, L), t c_{k}(k=0,1, \cdots, L+1)$, and $\Delta t_{k}(k=0,1, \cdots, L)$ where t_{0} is the initial time and t_{L} is the final time.

In digital simulation, the average currents (i.e., heterogeneous electron transfer rates) at an electrode surface in given time intervals and the average concentrations of all electroactive species in discretized volumes $\delta V_{j}(j=1,2, \cdots, N)$ are aimed to be solved instead of the analytical current function of t and the continuous concentration function of x and t.

From Fick's first law, the flux of species i through a plane of unit area at a location x_{j} at a time t_{k}, symbolized as $J_{\text {, }}$ $\left(x_{j}, t_{k}\right)$, can be approximated as follows.

$$
\begin{equation*}
J_{i}\left(x_{j}, t_{k}\right)=-D_{i}\left[\underline{C}_{i}\left(x c_{j+1}, t_{k}\right)-\underline{C}_{i}\left(x c_{j}, t_{k}\right)\right] / \Delta x c_{j} \tag{1}
\end{equation*}
$$

where D_{i} is the diffusion coefficient of species i and the $\underline{C}_{i}\left(x c_{j}, t_{k-1}\right)$ is the average concentration of species i in δV_{r}. The above equation is simply a finite difference form of the well-known equation,

$$
\begin{equation*}
J_{i}(x, t)=-D_{i} d C_{i}(x, t) / d x \tag{2}
\end{equation*}
$$

The schemes in which the average flux of species i through a plane at x_{j} during t_{k} and t_{k+1}, symbolized as $L_{i}\left(x_{j}, t_{k} / t_{k+1}\right)$, is assumed to be same as $J_{j}\left(x_{j}, t_{k}\right)$,

$$
\begin{equation*}
J\left(x_{j}, t_{k} / t_{k+1}\right)=-D_{i}\left[\underline{C}_{j}\left(x c_{j+1}, t_{k}\right)-\underline{C}_{j}\left(x c_{p}, f_{k}\right)\right] / \Delta x c_{j} \tag{3}
\end{equation*}
$$

are called fully explicit or the FTSC representation (forward time centered space ${ }^{12}$. In other words, in an explicit method, only the concentrations of old time t_{k} are used to represent the average flux between old time t_{k} and new time t_{k+1}. On the other hand, in a fully implicit method, only the concentrations of new time t_{k+1} are used as follows.

$$
\begin{equation*}
J_{i}\left(x_{j}, t_{k} / t_{k+1}\right)=-D_{i}\left[C_{i}\left(x c_{j+1}, t_{k+1}\right)-\underline{C}\left(x c_{j}, t_{k+1}\right)\right] / \Delta x c_{j} \tag{4}
\end{equation*}
$$

While a fully implicit method is stable for arbitrarily large timesteps, a fully explicit method is stable only for sufficiently small timesteps. In general, $\tilde{J}_{2}\left(x_{j}, t_{k} / t_{k+1}\right)$ can be approximated by mixing these two methods, i.e..

$$
\begin{equation*}
J\left(x_{j}, t_{k} / t_{k+1}\right)=(1-\theta) J\left(x_{j}, t_{k}\right)+\theta J\left(x_{j+} t_{k+1}\right) \tag{5}
\end{equation*}
$$

where $0 \leq \theta \leq 1$. The methods using $\theta=1 / 2$ and $2 / 3$ are respectively called as the Crank-Nicholson method and the Galerkin method. Both methods are still unconditionally stable ${ }^{6 i 12}$. In this work, the Crank-Nicholson method is used throughout all the digital simulation for the stability and the accuracy ${ }^{12}$.

The Fick's second law can be easily understood from the consideration of the number of species i in $\delta V V_{j}(\delta V)=A \Delta x$, and A is the side area of a box).
(Change of Number of species i in $\delta V{ }_{j}$ for time interval between t_{k} and t_{k+1})

$$
\begin{align*}
= & C\left(t c_{j}, t_{k+1}\right) \delta V_{j}-\underline{C}\left(x c_{j}, t_{k}\right) \delta V \\
= & -\left(\text { outflux of species } i \text { to right side during } t_{k} \text { and } t_{k+1}\right) \\
& \left.+ \text { (influx of species } i \text { from left side during } t_{k} \text { and } t_{k+1}\right) \\
= & -J\left(x_{j i} t_{k} / t_{k+1}\right) A \Delta t_{k}+\underline{K}\left(x_{j-1}, t_{k} / t_{k+1}\right) A \Delta t_{k} \tag{6}
\end{align*}
$$

Dividing by δV_{j},

$$
\begin{align*}
& C\left(x c_{j ;} t_{k}\right)-C\left(x c_{j}, t_{k-1}\right)= \\
& \quad-\left[L\left(x_{j}, t_{k} / t_{k+1}\right)-L\left(x_{j-1}, t_{k} / t_{k+1}\right)\right] \Delta t_{k} / \Delta x_{j} \tag{7}
\end{align*}
$$

or

$$
\begin{align*}
& {\left[C\left(x c_{j}, t_{k}\right)-C\left(x c_{j}, t_{k-1}\right)\right] / \Delta t_{k}=} \\
& \quad-\left[J\left(x_{j}, t_{k} / t_{k-1}\right)-L\left(x_{j-1}, t_{k} / t_{k-1}\right)\right] / \Delta x_{j} \tag{8}
\end{align*}
$$

The combined equation of (1) and (8) is a finite difference form of the well-known differential equation for Fick's second law, i.e.,

$$
\begin{equation*}
d C_{t}(x, t) / d t=-d /(x, t) / d^{\prime} x=D_{i}\left(d^{2} C_{i}(x, t) / d x^{2}\right) \tag{9}
\end{equation*}
$$

Among the above equations, only three simple and elementary Eqs. (1), (5), and (7) are used in digital simulation instead of a final differential Eq. (9) itself. The similar discussion for heat conduction problem is well described in the physics textbook ${ }^{13}$. The difference is that, in mass transfer case, the concentrations of multiple species are to be solved instead of one physical variable, i.e., temperature. More importantly, the boundary condition is distinctively different.

Boundary Flux. The flux of species i at $x_{j}(j=1,2, \cdots$, $N-1$) can be solved by Eq. (1) described as above. The fluxes at x_{N} can be considered as zero when the concentrations in δV_{N} is not perturbed by letting x_{N} as semi-infinite distance away ${ }^{2}, x_{N}=10\left(D_{F} t_{L}\right)^{1 / 2}$ in this work, from the electrode surface where the perturbation begins. Here D_{F} means the largest diffusion coefficient among those of all electroactive species. Then, one thing left to be formulated is boundary flux ${ }^{11}$ at the electrode su face. Considering the electrode reaction, $\mathrm{O}+\mathrm{ne} \rightarrow \mathrm{R}$, the oxidized species (O) near the electrode surface obtains n elec:rons in the rate of $k_{f} \underline{C}_{o}\left(x c_{0}\right.$, t_{k}) from the chemically inert and conducting electrode to become other species (R). Likewise, backward reaction, R -ne $\rightarrow 0$, is occurred at the eectrode surface at the rate of $k_{b} \underline{C}_{R}\left(x_{0}, t_{k}\right)$. Since the oxidized species is disappeared by forward reaction and generated by backward reaction,

$$
\begin{equation*}
J_{o}\left(x_{0,}, t_{k}\right)=-k_{A}\left(t_{k}\right) \underline{C}_{0}\left(x c_{0}, t_{k}\right)+k_{b}\left(t_{k}\right) \underline{C}_{R}\left(x_{0+}, t_{k}\right) \tag{10}
\end{equation*}
$$

Apparently, the fluxes of the electro-inactive species are zero simply because the mass flow is blocked. In a simple redox reaction which is considered in this work, only two electroactive species (O and R) change their oxidation states and their fluxes at the electrode surface can be nonzero by heterogeneous reaction. But, since the chemical species cannot actually disappear into the electrode surface though the oxidation states of species are changed, total flux of chemical species at the electrode surface, $J_{0}\left(x_{0}, t_{k}\right)+J_{R}\left(x_{0}, t_{k}\right)$, should be zero. This is the flux balarice equation.

$$
\begin{equation*}
J_{0}\left(x_{0}, f_{k}\right)=-J_{R}\left(x_{0}, f_{k}\right) \tag{11}
\end{equation*}
$$

Since the negative flux (flux toward the electrode) of oxidized species is caused by the flux of electron from the electrode surface, the current flow through the electrode is

$$
\begin{equation*}
I=-n F A J,\left(x_{0}, t_{k}\right) \tag{12}
\end{equation*}
$$

where n electrons per an oxidized species are needed.
Though the $J_{o}\left(x_{0}, t_{k}\right)$ and $J_{k}\left(x_{0}, t_{k}\right)$ are caused by the heterogeneous electron transfer, the mass transfers between the center of δV_{1} and δV_{0} are restricted by Fick's first law, i.e.,

$$
\begin{align*}
& J_{0}\left(x_{0}, t_{k}\right)=-D_{0}\left[\underline{C}_{0}\left(x c_{1}, i_{k}\right)-\underline{C}_{0}\left(x c_{0}, t_{k}\right)\right] / \Delta x c_{0} \tag{13}\\
& J_{R}\left(x_{0}, t_{k}\right)=-D_{R}\left[\underline{C}_{R}\left(x c_{1}, t_{k}\right)-\underline{C}_{R}\left(x c_{0}, t_{k}\right)\right] / \Delta x c_{0} \tag{14}
\end{align*}
$$

From (10), (13), and (14),

$$
\begin{align*}
& \underline{C}_{0}\left(x c_{0}, t_{k}\right)=\underline{C}_{0}\left(x c_{1}, t_{k}\right)+J_{0}\left(x_{0}, t_{k}\right) \Delta x c_{0} / D_{R} \tag{15}\\
& \underline{C}_{R}\left(x c_{0}, t_{k}\right)=\underline{C}_{R}\left(x c_{1}, t_{k}\right)-J_{0}\left(x_{0}, t_{k}\right) \Delta x c_{0} / D_{R} \tag{16}
\end{align*}
$$

From (15) and (16), Eq. (10) becomes

$$
\begin{align*}
J_{0}\left(x_{0}, t_{k}\right)= & \left.-k \lambda_{k}\right)\left[\underline{C}_{0}\left(x c_{1}, t_{k}\right)+J_{0}\left(x_{0,}, t_{k}\right) \Delta x c_{0} / D_{R}\right] \\
& +k_{k}\left(t_{k}\right)\left[\underline{C}_{R}\left(x x_{1}, t_{k}\right)-J_{0}\left(x_{0}, t_{k}\right) \Delta x c_{0} / D_{R}\right] \tag{17}
\end{align*}
$$

Rearranging (17),

$$
\begin{align*}
J_{0}\left(x_{0}, t_{k}\right)= & {\left[-k\left(t_{k}\right) \underline{C}_{0}\left(x c_{1}, t_{k}\right)+k_{B}\left(t_{k}\right) \underline{C}_{R}\left(x c_{1}, t_{k}\right)\right] } \\
& /\left[1+k /\left(t_{k}\right) \Delta x c_{0} / D_{R}+k_{b}\left(t_{k}\right) \Delta x c_{0} / D_{R}\right] \tag{18}
\end{align*}
$$

Here, the heterogeneous kinetic constants $k\left(t_{k}\right)$ and $k_{b}\left(t_{k}\right)$ are functions of electrode potential, $E\left(f_{k}\right)$, which changes linearly in the linear sweep voltammetry. For the relationship between kinetic constants and electrode potential, ButlerVolmer ${ }^{2}$ kinetic model was used in this work.

$$
\begin{gather*}
k\left(t_{k}\right)=k^{\circ} \exp \left[-\alpha(n F / R T)\left(E\left(t_{k}\right)-E^{\circ}\right)\right] \tag{19}\\
k_{b}\left(t_{k}\right)=k^{\circ} \exp \left[(1-\alpha)(n F / R T)\left(E\left(t_{k}\right)-E^{\circ \prime}\right)\right] \tag{20}
\end{gather*}
$$

where α is called the transfer coefficient, k° is the intrinsic heterogeneous kinetic constant, and $E^{\circ \prime}$ is the formal potential for $0+n e \rightarrow R$. From (18) along with (19) and (20), the boundary flux at the electrode surface can be solved.

Matrix equation. From (1), (5), (7) and (18), the concentrations at t_{k+1} can be solved by the concentrations at t_{k}. For the fully explicit method, the resulting matrix equation as shown below is easy to solve because the matrix inversion process is not necessary. A $2 \mathrm{~N} \times 2 \mathrm{~N}$ matrix $D\left(t_{k}\right)$ is a 5 band diagonal matrix and a function of known variables, \dot{D}_{0}, D_{R}, $k\left(t_{k}\right), \Delta x c_{j}$, and Δt_{k}.

$$
\left\{\begin{array}{l}
\underline{C}_{o}\left(x c_{1}, t_{k+1}\right) \tag{21}\\
\underline{C}_{R}\left(x c_{1}, t_{k+1}\right) \\
\underline{C}_{o}\left(x c_{2}, t_{k+1}\right) \\
\underline{C}_{R}\left(x c_{2}, t_{k+1}\right) \\
\cdot \\
\cdot \\
\cdot \\
\underline{C}_{o}\left(x c_{N}, t_{k+1}\right) \\
\underline{C}_{R}\left(x c_{N}, t_{k+1}\right)
\end{array}\right\}=\left[D\left(t_{k}\right)\right] \cdot\left\{\begin{array}{l}
\underline{C}_{o}\left(x c_{1}, t_{k}\right) \\
\underline{C}_{R}\left(x c_{1}, t_{k}\right) \\
\underline{C}_{o}\left(x c_{2}, t_{k}\right) \\
\underline{C}_{R}\left(x c_{2}, t_{k}\right) \\
\cdot \\
\cdot \\
\cdot \\
\underline{C}_{o}\left(x c_{N}, t_{k}\right) \\
\underline{C}_{R}\left(x c_{N}, t_{k}\right)
\end{array}\right\}
$$

or briefly

$$
\begin{equation*}
\underline{C}\left(t_{k+1}\right)=\boldsymbol{D}\left(t_{k}\right) \underline{\boldsymbol{C}}\left(t_{k}\right) \tag{22}
\end{equation*}
$$

But, in the Crank-Nicholson method, the resulting matrix equation

$$
\begin{equation*}
D\left(t_{k+1}\right) \underline{C}\left(t_{k+1}\right)=\boldsymbol{D}\left(t_{k}\right) \underline{C}\left(t_{k}\right) \tag{23}
\end{equation*}
$$

has a matrix at the left hand side, so the matrix inversion process is necessary. Again, $D\left(t_{k}\right)$, and $D\left(t_{k+1}\right)$ are 5 band diagonal matrixes and functions of known variables, D_{0}, D_{R}, $k_{i}\left(t_{k}\right), k_{b}\left(t_{k}\right), k_{f}\left(t_{k+1}\right), k_{b}\left(t_{k+1}\right), \Delta x c_{j}$, and Δt_{k}. The efficient matrix inversion routine ${ }^{12}$ in C -language was used. The computer code for Eq. (23) is constructed by C-language and compiled by Turbo-C 3.0 . Once $\boldsymbol{C}\left(t_{k+1}\right)$ (concentrations at t_{k+1}) is solved, then the average flux and current during t_{k}^{\prime} and t_{k+1} can be calculated by Eq. (5) and (12).

Exponentially expanding grid. The exponential algo-

Figure 2. Digital simulation error in chronoamperometry.
rithm which was developed by Joslin and Pletcher ${ }^{4}$ and refined by Feldberg' was employed to generate the nonlinear space and time grids, i.e.,

$$
\begin{equation*}
\Delta x_{j}=\Delta x_{1} \exp [\beta(j-1)] \tag{24}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{i}=\Delta x_{1}[\exp (\beta j)-1] /[\exp (\beta)-1] \tag{25}
\end{equation*}
$$

But, in this work, the method was modified to vary the number of grids, not the exponential factor β. From the nonlinear Eq. (25), β was solved by given values of $\Delta x_{1}, x_{N}$, and N. Once β is solved, $\Delta x_{j}(j=2,3, \cdots, N), x_{j}(j=1,2 \cdots, N-1), x c_{j}=$ $\left(x_{j}+x_{j-1}\right) / 2 \quad(j=1,2, \cdots, N)$, and $\Delta x c_{j}=x c_{j-1}-x c_{j}(j=0,1, \cdots, N)$ can be solved immediately. In this way, the nonlinear space grid can be explicitly defined by only three input variables, i.e., $\Delta x_{1}, x_{N}$, and N. Similarly, the nonlinear time grid also can be explicitly defined by $\Delta t_{1}, t_{L}$, and L.

Results and Discussion

Error analysis of chronoamperometry. Using the Clanguage program based on the previous section, a diffusion controlled chronoamperometric curve was simulated and compared with the Cottrell equation. The simulation variables in MKS units were $D_{0}=D_{R}=10^{-9} \mathrm{~m}^{2} / \mathrm{sec}, \Delta x_{1}=5 \times 10^{-9} \mathrm{~m}$, $x_{N}=1 \times 10^{-2} \mathrm{~m}, N=128, \Delta t_{1}=1.25 \times 10^{-8} \mathrm{sec}, t_{L}=1 \times 10^{3} \mathrm{sec}$, $L=128, E-E^{\circ \prime}=-1.0$ V, $k^{\circ}=10^{8} \mathrm{~m} / \mathrm{sec}, C_{0}{ }^{*}=1 \mathrm{~mol} / \mathrm{m}^{3}$, $C_{R}{ }^{*}=0 \mathrm{~mol} / \mathrm{m}^{3}, n=1$, and $T=298.15 \mathrm{~K}$, where $C_{i}{ }^{*}$ is the bulk concentration of species i. Note that $\mathrm{DM}=D_{o} \Delta t_{1} /\left(\Delta x_{i}\right)^{2}$ ≤ 0.5. The relative errors versus time are shown in Figure 2. In a wide range of time ($10^{-5} \mathrm{sec}$ to $10^{3} \mathrm{sec}$), the error is less than 0.08%. Considering that the execution time was 13 sec in 486 -DX PC computer, it is proved that the nonlinear gridding method which is employed in this work is very efficient and accurate.

Current function of the reversible system. Using the same program, the linear sweep voltammetric response was simulated by the linearly changing electrode potential with the scan rate \mathbf{v}. But, instead of nonlinear time grid, the linear time grid (therefore the linear electrode potential grid) was used in this case. Not like the Cottrell equation for the chronoamperometry, the analytical solution for the

Figure 3. Digital simulation error in the linear sweep voltammetry of reversible charge transfer system.
linear sweep voltammetry is integral form ${ }^{7.8}$ which should be numerically solved and usually represented by the numerical table form.

For the discussion of general quasi-reversible kinetics, the dimensionless kinetic parameter ${ }^{9} \Lambda=k^{0} /\left[D_{o}^{1-\alpha} D_{R}^{a}(n F / R T)\right]^{1 / 2}$ and the current function ${ }^{9} \Psi=1 /\left[n F A C^{*} D_{0}{ }^{1 / 2}(\mathrm{O} N F / R T)^{1 / 2}\right]$ are employed. The reversible and totally irreversible systems are the limiting cases of the general quasi-reversible system. If k° (or Λ^{\prime}) approaches to infinite, the term on the left-hand side of Eq. (10) is negligible compared to the individual terms on the right side. From Eqs. (10), (19), and (20), the Nernst equation for the reversible system is resulted, $\underline{C}_{0}\left(x c_{0}\right.$, $\left.t_{k}\right) / \underline{C}_{R}\left(x_{0}, t_{k}\right)=\exp \left[(n F / R T)\left(E\left(t_{k}\right)-E^{o \prime}\right)\right]$. To simulate the reversible system, a new program based on this Dirichlet boundary condition ${ }^{12}$ can be constructed. In this work, simply a huge number, 10^{12}, was used for Λ in the general quasi-reversible kinetics system program. It can be increased more as long as the numerical value can be accepted by the computer program and does not lead to out-of-range number during the computation. The value, 10^{12}, is more than enough considering that even smaller $\Lambda=10^{3}$ well describes the reversible system ${ }^{9}$. This value can be handled without difficulty in the double precision program which allows the value upto 1.7×10^{308}.

To check the accuracy of the simulated result, it is accepted as a true statement that the simulated result approaches to a true peak current value by increasing the grid number and the potential grid to infinite number. The peak values of the simulated current function $\boldsymbol{\Psi}_{\text {sim }}$ are shown in Figure 3. It turns out to be that the digital error is bilinear to the inverse square of the number of space grid and the square of the potential step size. The asymptotic value of the peak value of current function Ψ (or $\sqrt{\pi} \chi(a t)$), 0.44630 , is the accepted true value. By this accepted true value, the digital error is 0.004% for $N=512$ and $\Delta E=1 \mathrm{mV}$. Therefore, upto 5 digits of the current function values which are tabulated in Table 1 are believed to be significant.
Current function of totally irreversible system.
Exactly same strategy as used in the case of reversible system was used to obtain the current function of the totally irreversible system, using $\alpha=0.5$ and $\Lambda=10^{-4}$. The corrected current function ${ }^{79} \Psi_{c a r}\left(\Psi_{c o n}=\Psi / \sqrt{\alpha}=\sqrt{\pi} \chi(b t)\right)$ versus

Table 1. Current function ($\Psi==\sqrt{\pi x}(a t))$ values for reversible charge transfer

$n\left(E-E_{1 / 2}\right)$,		Current			function values
mV	Ref. 7	Ref. 8	This work		
120	0.009	0.0091	0.00925		
100	0.020	0.0197	0.01983		
80	0.042	0.0416	0.04180		
60	0.084	0.0847	0.08496		
50	0.117	0.1180	0.11833		
45	0.138	0.1382	0.13849		
40	0.160	0.1607	0.16100		
35	0.185	0.1855	0.18576		
30	0.211	0.2122	0.21251		
25	0.240	0.2405	0.24081		
20	0.269	0.2698	0.27007		
15	0.298	0.2993	0.29952		
10	0.328	0.3281	0.32829		
5	0.355	0.3553	0.35544		
0	0.380	0.3800	0.38007		
-5	0.400	0.4013	0.40139		
-10	0.418	0.4187	0.41880		
-15	0.432	0.4319	0.43196		
-20	0.441	0.4408	0.44076		
-25	0.445	0.4453	0.44536		
-28.5	0.4463	0.4463	0.44625		
-30	0.446	0.4461	0.44610		
-35	0.443	0.4435	0.44346		
-40	0.438	0.4380	0.43890		
-50	0.421	0.4210	0.42095		
-60	0.399	0.3991	0.39916		
-80	0.353	0.3528	0.35295		
-100	0.312	0.3123	0.31242		
-120	0.280	0.2800	0.28021		
-150	0.245	0.2447	0.24487		
15					

Table 2. Corrected current function ($\left.\Psi_{\text {om }}=\Psi / \sqrt{a}=\sqrt{\pi} \chi(b t)\right)$ values for irreversible charge transfer

$E_{\text {con }, ~ m V ~}^{c}$ (see text)	Corrected current	function
$\mathbf{1 6 0}$	Ref. 7	This work
140	0.003	0.00349
120	0.008	0.00756
110	0.016	0.01633
100	0.024	0.02391
90	0.035	0.03489
80	0.050	0.05062
70	0.073	0.07289
60	0.104	0.10377
50	0.145	0.14536
40	0.199	0.19906
35	0.264	0.26422
30	0.303	0.29993
25	0.337	0.33648
	0.372	0.37256

20	0.406	0.40661
15	0.437	0.43695
10	0.462	0.46200
5	0.480	0.48051
0	0.492	0.49177
-5	0.496	0.49573
-5.34	0.4958	0.49575
-10	0.493	0.49300
-15	0.485	0.48469
-20	0.472	0.47220
-25	0.457	0.45695
-30	0.441	0.44020
-35	0.423	0.42294
-40	0.406	0.40591
-50	0.374	0.37411
-70	0.323	0.32293

$$
\mathrm{n}\left(\mathrm{E}-\mathrm{E}_{1 / 2}\right) / \text { Volt }
$$

Figure 4. $\log \left(D_{R} / D_{0}\right)$ dependency of the linear sweep voltammetric curves for $\alpha=0.7$ and $\log \Lambda=-0.5$. (A) Ψ vs $n\left(E-E_{1 n}\right)$; $\log \left(D_{R} / D_{o}\right)=1.0,0.5,0,-0.5$, and 1.0 from left to right. (B) Ψ vs $n\left(E-E_{1 / 2}\right) ; 5$ voltammograms of (A) are folded together. $E_{1 / 2}=E^{\circ \prime}+(R T / n F) \ln \left(D_{R} / D_{0}\right)^{1 / 2}$.
the corrected potential ${ }^{7} E_{\text {cor }}\left(E_{\text {orr }}=\left(E-E_{1 / 2}\right)\right.$ ant $+(R T / F) \ln$ $\left.\left(\left(\sigma_{0} \alpha(n F / R T) v\right)^{1 / 2} / k^{\circ}\right)\right)$ is tabulated in Table 2. The accepted true value of peak $\Psi_{\text {cor }}$ is 0.49580 .

Potential shift by $\boldsymbol{D}_{0} / \mathbf{D}_{\boldsymbol{R}}{ }^{9}$. In general, the potential of the current functions even for the quasi-reversible systems is shifted by the amount of $(R T / n F) \ln \left(D_{R} / D_{o}\right)^{1 / 2}$ as shown in Figure 4, Therefore, in Table 1 and 2, $E_{1 / 2}=E^{\circ+}+(R T / n F)$ $\ln \left(D_{R} / D_{o}\right)^{1 / 2}$ was used instead of E° for general case of $D_{e} / D_{R} \neq 1$.

Figure 5. Linear sweep voltammetric curves for $a=0.5$. Solid lines (-); digital simulation curve for $\log \Lambda=1.5,0.5,-0.5$, $1.5,2.5$, and 3.5 from left to right. Open circle (O); current function of reversible charge transfer system. Closed circle (-); current function of totally irreversible charge transfer system.

Figure 6. Linear sweep voltammetric curves for $\alpha=0.1$. Solid lines (一); digital simulation curve for $\log \Lambda=1.7$ (upper) and 1.2 (lower). Open circle (O); current function of reversible charge transfer system.

Zones for reversible and totally irreversible system.

Since the accurate current functions of the reversible and totally irreversible systems are obtained, it is a matter of iteration to find whether the simulated voltammogram for various α and Λ is similar to one of this system or not. To reduce the time for the simulations of all possible case of a and Λ, the less sparse grid parameters, $N=128$ and $\Delta E=2 \mathrm{mV}$, were used. For this gridding, in Figure 2, the error is 0.07% for the reversible systems and similarly 0.07% for the irreversible systems. Therefore, for the arbitrary a and Λ, the digital error is less than 0.07%. This error is more than enough to check whether the simulated voltammogram is deviated 1% from the tabulated current functions.

Typical voltammograms are shown in Figure 5, for $\alpha=0.5$ and various $\log \Lambda=1.5,0.5,-0.5,1.5,2.5$, and 3.5. For \log

Figure 7. Linear sweep voltammetric curves for $\log \Lambda=-1.7$. Solid lines (-); digital simulation curve for $\alpha=1.0,0.8,0.6,0.4$, and 0.2 from left to right. Closed circle (-) current function of totally irreversible charge transfer system.

Figure 8. Zones of the reversible and totally irreversible systems for the linear sweep voltammetry at a planar electrode. Open circle (O): error of 1% over. Closed circle ($)$; error of 1% or less.
$\Lambda=1.5$, it is exactly same as the reversible function (open circles). For $\log \Lambda=1.5,2.5$, and 3.5 , those are exactly same as the irreversible current function (filled circle). But, log $\Lambda=0.5$ and -0.5 , none of the tabulated current functions is not fitted. It is categorized as a quasi-reversible system. According to Matsuda and Ayabe ${ }^{9}$, the reversible system is defined as $\Lambda \geq 15$ for any a. But, as shown in Figure 6, the simulated voltarmogram for $\Lambda=10^{1.2}=15.85$ and $\alpha=0.1$, the deviation of peak current is 4%. In the criterion for this report, it is quasi-reversible.

Typical irreversible voltammograms for $\log \Lambda=-1.7$ and various $\alpha=1.0,0.8,0.6,0.4$, and 0.2 , are shown in Figure 7. All the curves are same as the irreversible current function (filled circle). According to Matsuda and Ayabe, none of these cases is irreversible system ($\log \Lambda \leq-2(1+\alpha)$). Inconsistency is evident because the larger error range (4% for over) is allowed for the reversible system, but the very
restricted error range (less than 1%) is allowed for the irreversible system. Therefore, the revised criterions have to be proposed in the practical point of view.

In Figure 8, the numerous voltammograms are checked to figure out the zones for the reversible system and the irreversible system for the linear sweep voltammetry. From this figure, it is proposed that for $1 \geq \alpha \geq 0.1$, the reversible zone is in $\Lambda \geq 10^{1.7}$ and the totally irreversible zone is in $\mathrm{A} \leq 10^{-17}$.

Conclusion

The accurate and efficient digital simulation program for one-dimensiona! electrochemical phenomena was developed. It is demonstrated that the digital simulation program based on the combined algorithm of the Crank-Nicholson scheme and the exponentially expanding grids is very accurate and efficient for the simulation of chronoamperometry. Applying this to the linear sweep voltammetry at a planar electrode for the electrode reaction, $0+n e \rightarrow R$, the accurate current functions for the reversible and totally irreversible heterogeneous electron transfer systems were obtained. The voltammograms of all the range of $\alpha(0.1$ to 1.0$)$ and $\Lambda\left(10^{-5}\right.$ to 10^{5}) are compared with the current functions of the reversible system and the totally irreversible system. If the deviations from the current function of the reversible system or that of the totally irreversitle system in all the simulated potential range are same ir. 1% error range, then that α and Λ value is included in the reversible system or the totally irreversible system. In this way, the values of a and Λ for the reversible system and the totally irreversible system are collected to find the zones. In result, the reversible zone is in $\Lambda \geq 10^{1.7}$ and the totally irreversible zone is in $\Lambda \leq 10^{-1.7}$ for $1 \geq \alpha \geq 0.1$.

Acknowledgement. This work was supported by the Korea Science and Engineering Foundation (Grant No. 923-

0300-003-2).

References

1. Feldberg, S. W. In Electroanalytical Chemistry; Bard, A. J. Ed.; Marcel Dekker: New York, 1969; Vol. 3.
2. Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; John Wiley \& Sons: New York, 1980, Chapter 5.
3. Wightman, R. M.; Wipf, D. O. In Electroanalytical Chemistry; Bard, A. J. Ed.; Marcel Dekker: New York, 1989; Vol. 15.
4. Joslin, T.; Pletcher, D. J. Electroanal. Chem. 1974, 49, 171.
5. Feldberg, S. W. J. Electroanal. Chem. 1981, 127, 1.
6. Huebner, K.; Thornton, E. A. The Finite Element Method for Engineers; 2nd ed.; John Wiley \& Sons: New York, 1982; p 293-297.
7. Nicholson, R. S.; Shain, I. Anal. Chem. 1964, 36، 706.
8. Suzuki, T.; Mori, I.; Nagamoto, H.; Ito, M. M.; Inoue, H. J. Electroanal. Chem. 1992 324, 397.
9. Matsuda, H.; Ayabe, Y. Z. Elektrochem. 1955, 59, 494.
10. Atkins, P. W. Physical Chemistry, 4th ed.; Oxford University Press: Oxford, 1990; p 763.
11. Feldberg, S. W. In Computers in Chemistry and Instrumentation; Vol. 2, Electrochemistry: Calculation, Simulation, and Instrumentation; Mattson, J. S.; Mark, Jr., H. B.; MacDonald, Jr., H. C. Eds.; Marcel Dekker: New York, 1972.
12. Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T. Numerical Recipes in C: The Art of Scientific Computing; Cambridge University Press: Cambridge, 1988. Chapter 7.
13. Feynman, R. P.; Reighton, R. B.; Sands, M. The Feynman Lectures on Physics; Addison-Wesley, Reading: 1964; Vol. II, Chapter 3.
