DOI QR코드

DOI QR Code

The Effect of Alkali Metal Ions on Nucleophilic Substitution Reactions of Aryl Substituted Benzenesulfonates

  • Ik-Hwan Um (Department of Chemsistry, Ewha Womans University) ;
  • Seok-Joo Lee (Department of Chemsistry, Ewha Womans University) ;
  • Hee-Sun Park (Department of Chemsistry, Ewha Womans University) ;
  • Dong-Sook Kwon (Department of Chemsistry, Ewha Womans University)
  • Published : 1994.02.20

Abstract

Rate constants have been measured spectrophotometrically for the nucleophilic substitution reactions of aryl substituted benzenesulfonates (3) with alkali metal ethoxides ($EtO^-M^+$) and butane-2,3-dione monoximates ($Ox^-M^+$) in ethanol at $25^{\circ}C$. The reactivity of the alkali metal ethoxides decreases in the order $EtO^-K^+> EtO^- > EtO^-Li^+$, indicating that $K^+$ ion behaves as a catalyst and $Li^+$ ion acts as an inhibitor for all the substrates studied. For the corresponding reactions of 3 with Ox^-M^+$, $Li^+$ ion also exhibits inhibitory effect for all the substrates, while, $K^+$ ion shows catalytic or inhibitory effects depending on the nature of substituents on the acyl and phenyl moieties. A study of substituent effect on rate has revealed that both EtO^- $and Ox^-$ systems have the same reaction mechanism. The different behavior shown by $K^+$ ion for the reaction of 3 with $EtO^-$ and $Ox^-$ would be attributed to a difference in charge polarization of S=O bond in the transition state between the two systems and/or a change in conformation of Ox^-K^+$.

Keywords

References

  1. J. Org. Chem. v.57 Kraft, D.;Cacciapaglia, R.;Bohmer, V.;EI-Fadl, A.;Harkema, S.;Mandolini, L.;Reinhoudt, D. L.;Verboom, W.;Vogt, W.
  2. J. Am. Chem. Soc. v.112 Ercolani, G.;Mandolini, L.
  3. Enzyme Structure and Mechanism(2nd Ed.) Fersht, A.
  4. Acc, Chem. Res. v.25 Suh, J.
  5. Adu. Enzymol. v.58 Breslow, R.
  6. J. Am. Chem. Soc. v.109 Herschlag, D.;Jencks, W. P.
  7. J. Am. Chem. Soc. v.114 Suh, J.;Park, T. H.;Hwang, B. K.
  8. J. Chem. Soc., Chem. Commun. Buncel, E.;Dunn, E. J.;Bannard, R. A.;Purdon, J. G.
  9. Can J. Chem. v.67 Dunn, E. J.;Buncel, E.
  10. Can. J. Chem. v.68 Dunn, E. J.;Moir, R. Y.;Buncel, E.;Purdon, J. G.;Bannard, R. A.
  11. Bull. Korean Chem. Soc. v.12 Kwon, D. S.;Park, H. S.;Um, I. H.
  12. Tetrahedron Lett. v.33 Um, I. H.;Yong, J. I.;Kwon, D. S.;Ahn, B. T.;Lee, I.
  13. J. Chem. Soc., Chem. Commun. Buncel, E.;Pregel, M. J.
  14. Can. J. Chem. v.68 Pregel, M. J.;Dunn, E. J.;Buncel, E.
  15. Practical Organic Chemistry Vogel, A. I.
  16. Mechanism and Theory in Organic Chemistry(3rd Ed.) Lowry, T. H.;Richardson, K. S.
  17. Acc. Chem. Res. v.11 Lehn, J. M.
  18. Adu. Phys. Org. Chem. v.17 De Jong, F.;Reinhoudt, D. N.
  19. J. Am. Chem. Soc. v.109 Ba-Saif, S.;Luthra, A. K.;Williams, A.
  20. Acc. Chem. Res. v.22 Williams, A.
  21. J. Am. Chem. Soc. v.109 Blake, J. F.;Jorgensen, W. L.
  22. J. Am. Chem. Soc. v.111 Buncel, E.;Um, I. H.;Hoz, S.
  23. J. Am. Chem. Soc. v.110 Buncel, E.;Shaik, S. S.;Um, I. H.;Wolfe, S.
  24. Bull. Korean Chem. Soc. v.11 Kwon, D. S.;Lee, G. J.;Um, I. H.
  25. Bull. Korean Chem. Soc. v.12 Um, I. H.;Jeon, J. S.;Kwon, D. S.
  26. J. Am. Chem. Soc. v.113 Pregel, M. J.;Dunn, E. J.;Buncel, E.
  27. Bull, Korean Chem. Soc. v.11 Um, I. H.;Choi, K. E.;Kwon, D. S.
  28. Bull. Chem. Soc. Jpn. v.42 Tagaki, W.;Kurusu, T.;Oae, S.

Cited by

  1. The Synthetic Potential of Phthalimide SET Photochemistry vol.34, pp.7, 1994, https://doi.org/10.1021/ar010004o