Cis-Selective Intermolecular Amidoalkylations of an a-tert-Butyldimethylsilyloxy \mathbf{N}-Acyliminium Ion

Gyochang Keum and Guncheol Kim*

Hanhyo Institutes of Technology, San 6 Daeyadong, Siheungshi, Kyunggido, 429-010

Received December 17, 1993

Recently the control of syn addition to an adjacent OH group has been explored using the ter-butyldimethylsiyl protecting group in Lewis acid catalyzed reactions with remarkable selectivity.' Similarly, in the case of intermolecular amidoalkylations the syn approach of nucleophiles to the OTBS group was observed, albeit the selectivity margins were moderate. ${ }^{2}$ Since the analogues of intermediate $\mathbf{2}$ are valuably used in γ-amino acids synthesis, ${ }^{3}$ we have decided to investigate the stereoselective amidoalkylations on the acyliminium ion 1 (Scheme 1).
Amide 3 was prepared from (+)-malic acid by modification of the known sequence ${ }^{2}$ (overall 51%). The optical purity of the precursor imide of 3 was determined by 'H-NMR analysis of the $\mathrm{S}-(-)-\alpha$-methoxy- α-(trifluoromethyl)phenyl acetate (MTPA) ester ${ }^{4}$ and found to be $>90 \% e e$.
Table 1 summarizes the results observed for the acid-induced alkylations of 3^{6} at C-5. Allyltri-n-butylstannane was found to be superior to allyltrimethylsilane with MgBr_{2} in cis-selectivity ${ }^{7}$ (Table, Entry 1-2). In addition, the nonpolar solvent toluene was proved to induce best selectivity, albeit the reaction proceeded rather slowly to afford 4 in 99% yield and a $21: 1$ cis : trans ratio (Entry 2).
In the allenylation (Entry 3-4), similar results were obser-

Scheme 1.
ved. While compound 5^{8} was obtained in a $1: 7.5$ cis : trans ratio with propargyltrimethylsilane ${ }^{9}$ (Entry 3), switching propargyltrimethylsilane to propargyltriphenylstannane ${ }^{10}$ reversed the ratio in favor of $c i$ is in toluene, a $6.9: 1$ cis : trans ratio (Entry 4). In the propargylation with propanedienyltriphenylstannane, ${ }^{11}$ virtually a single isomer of 6^{8} was detected (Entry 6) in toluene, and a better yield was observed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Entry 5) with slightly lower selectivity (cis: trans $19: 1$). This remarkable cis-selectivity in Lewis acid catalyzed alkylations may be equally explained by the stabilization of the incipient σ^{*} orbital at C-5 via the interaction with σ bonds of C-4 as in the case of alkylations in enones. ${ }^{1.12}$
In summary, high cis-selective amidoalkylations on the acyliminium ion are achieved by exploiting the adjacent OTBS group and stannane reagents in the presence of Lewis acid. Stereoselective alkylations on properly fuctionalized enantiomerically pure lactams and their synthetic applications are in progress.

References

1. (a) Jeroncic, L. O.; Cabal, M. P.; Danishefsky, S. J.; ShuIte, G. M. J. Org. Chem. 1991, 56, 387; (b) Danishefsky, S. J.: Cabal, M. P.; Chow, K. J. Am. Chem. Soc. 1989, 111, 3456; (c) Danishefsky, S. J.: Simoneau, B. J. Am. Chem. Soc. 1989, 111, 2599.
2. (a) Thaning, M.: Winstrand, L.-G. Acta. Chem. Scand. 1989, 43, 290; (b) Thaning. M.: Winstrand, L.-G. J. Org. Chem. 1990, 55, 1406.
3. (a) Bernadi, A.; Micheli, F.; Potenza, D.; Scolastico, C.; Villa, R. Tetrahedron Lett. 1990, 31. 4949; (b) Koot, W. J.: Van Ginkel, R.; Kranenburg, M.; Hiemstra, H. Tetrahedron Lett. 1991, 32. 401; (c) Takahata, H.; Yamazaki, K.; Takamatzu, T.; Momose, T. J. Org. Chem. 1990, 55 , 3947; (d) Ohta, T.; Shiokawa, S.; Sakamoto, R.; Nozoe, S. Tetrahedron Lett. 1990, 31, 7329 and references therein.
4. Dale, J. A.: Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512.
5. Chamberin, A. R.; Chung, J. Y. L. J. Am. Chem. Soc. 1983, 105, 3653. In the reduction with NaBH_{4} a mixture of two isomers was obtained, the cis-product was major.
6. Each isomer of 3 was treated respectively, no significant

Tabie 1.

Entry	Nucleophile	Lewis acid $/$ /solvent	Conditions $/$ [conc]	Product	cis : trans ${ }^{\text {b }}$	Yield (\%)
1	$\sim \mathrm{SiMe}_{3}$	$\mathrm{MgBr} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$12 \mathrm{hr} /[0.05 \mathrm{M}]$	4	$3.8: 1$	80
2	$\sim \mathrm{SnBu}_{3}$	MgBr 2 /toluene	$18 \mathrm{hr} /[0.10 \mathrm{M}]$	4	21:1	99
3	$\geq \mathrm{SiMe}_{3}$	TMSOTf/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$12 \mathrm{hr} /[0.05 \mathrm{M}]$	5	1:7.5	23
4	$\geq \mathrm{SnPh}_{3}$	MgBr_{2} /toluene	$18 \mathrm{hr} /[0.12 \mathrm{M}]$	5	$6.9: 1$	82
5	\# SnPh_{3}	$\mathrm{MgBr} / 2 / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$12 \mathrm{hr} /[0.14 \mathrm{M}]$	6	19:1	85
6	$\Rightarrow \mathrm{SnPh}_{3}$	$\mathrm{MgBr}_{2} /$ toluene	$18 \mathrm{hr} /[0.11 \mathrm{M}]$	6	>100 : 1	54

${ }^{*}$ All reactions were performed under anhydrous condition. adding 2.5 eq . of Lewis acid to a solution of the substrate and 3 eq. of the nucleophile at $0^{\circ} \mathrm{C}$, and slowly warming up to r.t. TMSOTf: 0.2 eq. ${ }^{b}$ As determined by ${ }^{\prime} \mathrm{H}$-NMR. 'Isolated yields.
differences in selectivity between the two were detected.
7. The stereochemistry of products was determined by the observation of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ vicinal coupling constants. J_{45} (ca. 6 Hz in cis-products and ca. 0 Hz in trans-products); See ref. 2(a), (b) and 3(a), (b).
8. For the analytical data of the cis-products careful separations were performed on MPLC. cis-compound 5: $[a]_{D}{ }^{24}$ $\left.-17.5^{\circ}\left(c=1.02, \mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz} \mathrm{CDCl})_{3}\right) \delta$ $7.3-7.1(\mathrm{~m}, 5 \mathrm{H}), 5.9-5.7(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=3.2,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.00(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}) .4 .95(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.98(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dt}, J=4.7,6.6 \mathrm{~Hz} .1 \mathrm{H})$, 2.51 (dd, $J=7.0,16.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.44 (dd, $J=16.4,6.1 \mathrm{~Hz}$. $1 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.0,0.03(2 \mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$ $\left.\mathrm{CDCl}_{3}\right) \delta 172.9,137.0,134.5,128.9,128.1,127.8,127.7$, $127.6,118.3,67.5,61.7,44.4,40.7,32.0,26.0,18.2,-4.2$, -4.8, IR (CHCl_{3}) 2955, 2931, 2858, 1702, 1422, 1362, 1309 , $1256,1126,1101,955,869,837,778,701,629$. MS (El)
$\mathrm{m} / 2346\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Cis-compound 6: $[\alpha]_{D}^{26}-10.9^{\circ}(c=$ $0.86, \mathrm{CHCl}_{3}$), ' $\left.\mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}) \mathrm{CDCl}_{3}\right) \delta$ 7.4-7.1 (m, $5 \mathrm{H}), 4.91(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.14(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dt}, J=5.0,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.52(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.51-2.3(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{t}, J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 0.83(\mathrm{t}, J=2.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.00,0.03(2 \mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (75 MHz CDCl 3) $\delta 173.1,136.8,128.9,128.1,127.8$, 81.1, 71.1, 67.1, 60.8, 44.5, 40.3, 25.9, 17.8, $-4.3,-4.9$. IR $\left(\mathrm{CHCl}_{3}\right) 3310,2953,2928,2856,1697,1415,1364,1310$, 1256, 1177, 1107, 1075, 970. MS (EI) m/z 344 (M ${ }^{+}+\mathrm{H}$).
9. Nativi, C.; Mann, A.; Taddei, M. Tetrahedron 1989, 45, 1131.
10. Le Quan, M.; Cadiot, P. Bull. Soc. Chim. Fr. 1965, 45.
11. Seyferth, D.; Jula, T. F.; Dertouzos, H.; Pereyre, M. J. Organomet. Chem. 1968, 11, 63.
12. Cieplak, A. S. J. Am. Chem. Soc. 1981, 103, 4540.

