DOI QR코드

DOI QR Code

Kinetics and Oxygen Vacancy Mechanism of the Oxidation of Carbon Monoxide on Perovskite$Nd_{1-x}Sr_xCoO_{3-y}$ Solutions as a Catalyst

  • Published : 1994.08.20

Abstract

The oxidation of carbon monoxide by gaseous oxygen in the presence of a powdered $Nd_{1-x}Sr_xCoO_{3-y}$ solid solution as a catalyst has been investigated in the temperature range from 150$^{\circ}$C to 300$^{\circ}$C under various CO and $O_2$ partial pressures. The site of Sr substitution, nonstoichiometry, structure, and microstructure were studied by means of powder X-ray diffraction and infrared spectroscopy. The electrical conductivity of the solid solution has been measured at 300$^{\circ}$C under various CO and $O_2$ partial pressures. The oxidation rates have been correlated with 1.5-and 1.2-order kinetics with and without a $CO_2$ trap, respectively; first-and 0.7 order with respect to CO and 0.5-order to $O_2$. For the above reaction temperature range, the activation energy is in the range from 0.25 to 0.35 eV/mol. From the infrared spectroscopic, conductivity and kinetic data, CO appears essentially to be adsorbed on the lattice oxygens of the catalyst, while $O_2$ adsorbs as ions on the oxygen vacancies formed by Sr substitution. The oxygen vacancy mechanism of the CO oxidation and the main defect of $Nd_{1-x}Sr_xCoO_{3-y}$ solid solution are supported and suggested from the agreement between IR data, conductivities, and kinetic data.

Keywords

References

  1. Indi. Chim. Belg. v.36 Derouane, E. G.
  2. Science v.195 Voorhoeve, R. J. H.;Johson, Jr. D. W.;Remeika, J. P.;Gallagher, P. K.
  3. J. Phys. Chem. v.88 Kiss, J. T.;Gonzalez, R. D.
  4. J. Am. Chem. Soc. v.79 Gushee, B. E.;Katz, L.;Ward, R.
  5. Anal. Chem. v.23 Laitenen, H. A.;Burdett, L. W.
  6. J. Phys. Chem. Solids v.49 Choi, K. M.;Kim, K. H.;Choi, J. S.
  7. J. Phys. Chem. Solids v.50 Kim, K. H.;Yim, D. Y.;Choi, K. M.;Choi, J. S.;Sauer, Robert G.
  8. J. Less-Common Metal. v.151 Huong, P. V.;Oh-Kim, E.;Kim, K. H.;Kim, D.;Choi, J. S.
  9. J. Phys. Chem. Solids v.50 Kim, D.;Choi, K. M.;Kim, K. H.;Choi, J. S.
  10. J. Phys. Chem. Solids v.49 Kim, K. H.;Park, S. H.;Choi, J. S.;Hyung, K. W.
  11. J. Phys. Chem. Solids v.48 Won, H. J.; Park, S. H.; Kim, K. H.; Choi, J. S.
  12. J. Phys. Chem. Solids v.50 Kim, Y. Y.;Kim, K. H.;Choi, J. S.
  13. J. Phys. Chem. v.77 Choi, J. S.;Lee, H. Y.;Kim, K. H.
  14. J. Phys. Chem. v.81 Choi, J. S.;Kang, Y. H.;Kim, K. H.
  15. J. Phys. Chem. v.83 Kim, K. H.;Han, H. S.;Choi, J. S.
  16. J. Phys. Chem. v.85 Kim, K. H.;Choi, J. S.
  17. J. Catalysis v.88 Kim, K. H.;Kim, D.;Choi, J. S.
  18. J. Appl. Polym. Sci. v.14 Kim, K. H.;Lee, S. H.;Heo, G.;Choi, J. S.
  19. J. Phys. Chem. Solids v.48 Kim, K. H.;Lee, S. H.;Heo, G.;Choi, J. S.
  20. J. Phys. Chem. Solids v.50 Kim, K. H.;Jun, J. H.;Lee, S. H.;Choi, J. S.
  21. J. Phys. Chem. Solids v.50 Choi, K. M.;Kim, K. H.;Choi, J. S.
  22. J. Phys. Chem. v.93 Choi, K. M.;Kim, K. H.;Choi, J. S.
  23. J. Appl. Polym. Sci. v.42 Choi, K. M.;Lee, E. J.;Park, J. W.;Kim, K. H.
  24. J. Phys. Chem. Solids v.51 Cho, S. K.;Kim, D.;Choi, J. S.;Kim, K. H.
  25. J. Phys. Chem. Solids v.50 Park, J. S.;Choi, K. M.;Kim, K. H.;Choi, J. S.
  26. J. Phys. Chem. Solids v.50 Kim, K. H.;Yun, S. H.;Choi, J. S.
  27. J. Am. Ceram. Soc. v.73 Cho, E. K.;Chung, W. Y.;Choi, K. M.;Kim, K. H.
  28. J. Phys. Chem. Solids v.51 Cho, S. K.;Kim, D.;Choi, J. S.;Kim. K. H.
  29. J. Less-Comm. Met. v.164 Kim, K. H.;Huong, P. V.;Oh-Kim, E.;Lalhaye, M.;Cho, S. K.;Kwak, B. C.
  30. Russ, J. Inorg. Chem. v.30 Shaplygin, I. S.;Lazarev, V. B.
  31. J. Catal. v.83 Nakamura, T.;Misono, M.;Yoneda, Y.