DOI QR코드

DOI QR Code

The Effect of Alkali Metal Ions on Nucleophilic Substitution Reactions of Aryl 2-Furoates with Alkali Metal Ethoxides in Ethanol

  • Dong-Sook Kwon (Department of Chemistry, Ewha Womans University) ;
  • Jung-Hyun Nahm (Department of Chemistry, Ewha Womans University) ;
  • Ik-Hwan Um (Department of Chemistry, Ewha Womans University)
  • Published : 1994.08.20

Abstract

Rate constants have been measured spectrophotometrically for the nucleophilic substitution reactions of p-and m-nitrophenyl 2-furoates (4 and 5, respectively) with alkali metal ethoxides ($EtO^-M^+$) in absolute ethanol at 25$^{\circ}$C. The reactivity of $EtO^-M^+$ toward 4 is in the order $EtO^-K^+$ > $EtO^-Na^+$> $EtO^-Li^+$ > $EtO^-K^+$+ 18-crown-6 ether. This is further confirmed by an ion pairing treatment method. The present result indicates that (1) ion paired $EtO^-M^+$ is more reactive than dissociated $EtO^-$ ; (2) the alkali metal ions ($K^+,\;Na^+,\;Li^+$) behave as a catalyst; (3) the catalytic effect increases with increasing the size of the metal ion. A similar result has been obtained for the reaction of 5, however, the catalytic effects shown by the metal ions are more significant in the reaction of 5 than in that of 4.

Keywords

References

  1. J. Org. Chem. v.57 Kraft, D.;Cacciapaglia, R.;Bohmer, V.;El-Fadl, A.;Harkema, S.;Mandolini, L.;Reinhoudt, D. N.;Verboom, W.;Vogt, W.
  2. J. Am. Chem. Soc. v.112 Ercolani, G.;Mandolini, L.
  3. Enzyme Structure and Mechanism Fersht, A.
  4. Acc. Chem. Res. v.25 Suh, J.
  5. J. Am. Chem. Soc. v.109 Herschlag, D.;Jencks, W. P.
  6. Adv. Enzymol. v.58 Breslow, R.
  7. J. Am. Chem. Soc. v.114 Suh, J.;Park, T. H.;Hwang, B. K.
  8. J. Chem Soc., Chem. Commun. Buncel, E.;Dunn, E. J.;Bannard, R. A.;Purdon, J. G.
  9. Can. J. Chem. v.67 Dunn, E. J.;Buncel, E.
  10. Can. J. Chem. v.68 Pregel, M. J.;Dunn, E. J.;Buncel, E.
  11. Tetrahedron Lett. v.33 Um, I. H.;Yong, J. I.;Kwon, D. S.;Ahn, B. T.;Lee, I.
  12. Bull. Korean Chem. Soc. v.12 Kwon, D. S.;Park, H. S.;Um, I. H.
  13. J. Org. Chem. v.54 Suh, J.;Mun, B. S.
  14. Bull. Korean Chem. Soc. v.15 Um, I. H.;Lee, S. J.;Park, H. S.;Kwon, D. S.
  15. Practical Organic Chemistry Vogel, A. I.
  16. J. Am. Chem. Soc. v.111 Buncel, E.;Um, I. H.;Hoz. S.
  17. J. Am. Chem. Soc. v.110 Buncel, E.;Shaik, S. S.;Um, I. H.;Wolfe, S.
  18. Collect. Czech. Chem. Commun. v.47 Pechanec, V.;Kocian, O.;Zavada, J.
  19. Bull. Korean Chem. Soc. v.11 Kwon, D. S.;Lee G. J.;Um, I. H.

Cited by

  1. Kinetics and Mechanism of the Pyridinolysis of Aryl Cyclobutanecarboxylates in Acetonitrile vol.23, pp.5, 1994, https://doi.org/10.5012/bkcs.2002.23.5.715
  2. Kinetics and Mechanism of the Base-Catalysed Cyclisation of 2-(Substituted benzoylamino)benzamides Giving Quinazolin-4-one and Quinazolin-4-thione Derivatives vol.2002, pp.11, 1994, https://doi.org/10.1002/1099-0690(200206)2002:11<1855::aid-ejoc1855>3.0.co;2-a
  3. Kinetics and Mechanism of the Pyridinolysis of Aryl Cyclopropanecarboxylates in Acetonitrile vol.24, pp.7, 1994, https://doi.org/10.5012/bkcs.2003.24.7.925
  4. Alkali Metal Ion Catalysis in Nucleophilic Substitution Reactions of 5-Nitro-8-quinolyl Benzoate with Alkali Metal Ethoxides in Anhydrous Ethanol: Unusually High Na+ Ion Selectivity vol.29, pp.1, 1994, https://doi.org/10.5012/bkcs.2008.29.1.117
  5. Metal Ion Catalysis in Nucleophilic Substitution Reaction of 4-Nitrophenyl Picolinate with Alkali Metal Ethoxides in Anhydrous Ethanol vol.31, pp.9, 2010, https://doi.org/10.5012/bkcs.2010.31.9.2483
  6. Metal Ion Catalysis in Nucleophilic Substitution Reaction of 4-Nitrophenyl Picolinate with Alkali Metal Ethoxides in Anhydrous Ethanol vol.31, pp.9, 2010, https://doi.org/10.5012/bkcs.2010.31.9.2483