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Solution Algorithm of Unsteady Flow
in a Dendritic Channel System
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Abstract

This paper presents a simultaneous solution algorithm for one-dimensional unsteady flow routing
through a dendritic channel system. This simulations solution algorithm is based on the double-
sweep method and utilizes separate recursion equations for continuity, momentum and energy equa-
tions for each of the individual components of a dendritic channel system. Through separate recur-
sion equations for each of the components, the new algorithm converts a dendritic channel network
problem into a single-channel problem. The new algorithm is utilized in conjunction with a linearized
unsteady flow model using full dynamic flow equations. The required computer storage for the
coefficient matrix of the whole system is reduced significantly from the 2N X2N matrix to a 2N X4
matrix, where N is the number of cross sections used in the computation of flow variables in
a dendritic channel system. The algorithm presented in this paper provides an efficient and accurate
modeling of unsteady flow events through a dendritic channel system.
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1. Introduction

Dendritic channel systems are frequently en-
countered in natural river basins and in man-
made urban drainage systems. The dendritic cha-
nnel system is composed of channel segments ar-
ranged in a branching configuration, with indivi-
dual channel segments connected at junctions to
form loops and treelike dendritic structures (Bar-
kau ef al, 1989; Yen and Osman, 1976). Owing
to backwater effects, the flow phenomena in a de-
ndritic channel system are much more complica-
ted than they are in a single channel (Akan and
Yen, 1981; Yen and Osman, 1976). Many investi-
gators in the past have simulated the dendritic
channel system by considering these systems to
be a combination of several independent channels
or to be a main channel having tributaries with
distributed lateral inflows (Barkau, 1985; Chen,
1973). These simplified solution algorithms have
been used in an attempt to avoid solving compli-
cated and/or extremely large coefficient matrices
resulting from the full-system approach. Among
the simplified methods, the overlapping Y-segment
method suggested by Sevuk and Yen (1973) has
been widely accepted (Yen, 1979; Yen and Osman,
1976). This method is based on the assumption
that each channel segment is separate and inde-
pendent from any other segments. Using this me-
thod, the downstream effect cannot propagate to
the upper segments. In order to achieve the accu-
racy required in solving the flow problem of an
entire dendritic system using this method, a large
number of iterations are necessary. Barkau (1985)
assumed the flow from the tributaries to be lateral
inflow. This assumption is acceptable in the case
of a small back-water and momentum contribution
from tributary flows. However, Barkau’s assump-
tions are restrictive in cases where the lateral
momentum and flow contributions from tributaries
are significant. In another approach, Tucci (1978)
and Barkau et al. (1989) applied the skyline solu-
tion algorithm to simulate unsteady flows in a de-
ndritic channel system (Barkau, 1985; Bathe and
Wilson, 1976). The skyline solution algorithm,
which was developed mainly to solve finite ele-
ment equations, requires a large number of deci-
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sion iterations during the reduction pass.

Although the simplified separate-segment itera-
tive algorithms are popular and generate an acce-
ptable overall solution, they fail to accurately des-
cribe the physical phenomena near channel junc-
tions in a dendritic system. In order to overcome
the simplifications used in these formulations, co-
mputational solution techniques are being develo-
ped for the simulation of entire channel networks
as unit systems rather than as a combination of
independent systems (Abbott, 1980; Tucci, 1978).
In this paper, one such simultaneous selution al-
gorithm is introduced. This direct solution algori-
thm, which is based on the double-sweep method,
is applied for unsteady flow routing through a de-
ndritic channel system (Richtmyer and Morton,
1967; Fread, 1971; Cunge et al., 1980).

The matrix formed by the finite difference app-
roximations to the simultaneous equations descri-
bing channel network flows loses its banded pro-
perty when following the conventional double-
sweep matrix solution. Solving the coefficient ma-
trix of the simultaneous equations resulting from
these approximations requires substantial compu-
ter memory for even moderately elaborate dend-
ritic systems. For a dendritic channel system in-
volving an N number of cross sections, the inter-
nal computer memory storage requirements using
the conventional method for the solution of gover-
ning momentum and continuity equations with no
provisions for memory storage reduction algori-
thms, is proportional to the size of the matrix (2
NX2N). Sparse matrix solution methods which
are in existence store only nonzero terms of the
coefficient matrix to avoid inefficient memory sto-
rage utilization. [n this paper, an efficient solution
algonthm transforming the off-diagonal terms of
the solution matrix to diagonal terms through re-
cursion equations is introduced. As a result of
this transformation, the storage requirements for
the coefficient matrix for a network composed of
N cross sections is reduced from (2NX2N) to (2
NX4). Additionally, due to the banded nature of
the proposed algorithm, the computational time
required for the solution of this (2NX4) system
is considerably faster than the nonbanded sparse
matrix solution. In this paper the proposed algori-
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thm is utilized in conjunction with a linear uns-
teady flow model for a dendritic channel system.

2. Governing Equations

The governing equations for simulating flows
in a dendritic channel system are the conservation
of mass equation and the conservation of momen-
tum or energy equation. At the channel junctions,
in addition to these equations, two equations for
the conservation of mass and energy are needed.
The governing flow equations for simulating uns-
teady one-dimensional flows in the individual cha-
nnel segments are known as St. Venant’s equation
(Abbott, 1980; Chen, 1973; Cunge ¢t gl., 1980) and
are given as

0
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where A is cross-sectional area; Q is discharge;
q is lateral inflow; h is water depth; Sy is channel
bed slope; and S is friction slope.

At channel junctions, assuming no change in
storage volume (dS/dt=0, where S is storage),
the continuity equation is given as (Sevuk and
Yen, 1973; Yen, 1979)

ZQ+EQ=0 3)

The conservation of energy equation for channel
junction is
V' \';
‘“2“' +gh;+gZ;= —'—d +—é“ + ghy+ gZ+ ghs
)

where V is velocity, A is elevation of the channel
bed, and h; is head losses due to friction and
other local losses. The subscript i indicates the
ith inflow channel at the junction and the subsc-
ript 0 represents the outflow channel at the junc-
tion. The first term in the right hand side of (4)
represents energy losses due to acceleration of
flow.

3. Basic Formulations
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The governing dendritic channel equations
(equations (1)-(4)) can only be solved numerically.
The model presented in this pater employs the
commonly used weighted four-point linear implicit
finite difference method for approximating the.go-
verning equations in a dendritic channel system
(Chen, 1973; Liggett and Cunge, 1975). In the im-
plementation of the channel network solution al-
gorithm, three different sets of recursion equa-
tions are utilized. These sets of equations pertain
to three different flow regions encountered in a
dendritic channel system. They are (1) interior
channel cross sections; (2) converging channel ju-
nctions; and (3) diverging channel junctions.

3.1 Interior Channel Cross Sections

Flow in individual channel segments which
make up the network is governed by (1) and (2).
For interior channel cross sections along indivi-
dual segments, the conservation of mass equation
(equation (1)) and momentum equation (equation
(2)) can be discretized using the weighted four-
point implicit finite difference approximation. It
is assumed that the friction slope used in the mo-
mentum equation can be obtained from Manning’s
equation. A Taylor series expansion of Manning's
equation is used for discretizing the friction slope.
The approximation equations for interior channel
cross sections are

DAQ+ By FLQE 4 Gib = Q)
D,Qr+ Egh” ‘+F2Q;*:s+czh."f:—ﬂz ®

where D,, E,, F;, G; and H, are known matrix
coefficients in the conservation of mass equation
and Dy, E; Fy G; and H; are the known matrix
coefficients in the conservation of momentum
equation. The subscript i refers to the ith cross
section and the superscript n refers to the nth
time step.

3.2 Converging Channel Junctions

In the formulation used in this paper, each cha-
nnel junction is allowed to have three upstream
converging channel segments. The conservation
of mass between the upstream channel sections
and the downstream channel cross section is for-



mulated as follows:
DyQ;  + Bl + FoQ, '+ Gshg ' =Hs (@)

where D;, E; F;, G; and H; are known matrix
coefficients in the conservation of mass equation
at converging junction. Subscripts u and d refer
to upstream and downstream stations from the
junction.

The conservation of energy at channel junctions
hetween upstream and downstream stations is fo-
rmulated as follows (one equation for each bra-
nch):

DQI" ' +En} " +FQF +Ghy " =H, @)

where Dy, E,, F;, and H; are known matrix coeffi-
cients in the conservation of energy equation at
a converging junction.

3.3 Diverging Channel Junctions

In the formulation used in this study, each cha-
nnel junction is allowed to have three downstream
diverging channel segments. The conservation of
mass between the upstream channel cross section
and the downstream channel sections is formula-
ted as follows:

DsQ) "'+ Eshly '+ FsQj; '+ Gshiy ' = Hy ©)

where Ds, E;, Fs, Gs and Hs are known matrix
coefficients in the conservation of mass equation
at diverging junction. The finite difference equa-
tion for the conservation of energy between the
upstream cross section and downstream channel
cross sections for diverging junctions is formula-
ted in the same way as for converging junctions.

4. Network Solution Algorithm

Simultaneous equations resulting from the finite
difference approximation of a dendritic channel
system can be written in matrix notation as [A]
[X} ={B}, where [A] is coefficient matrix, {X}
is vector of unknown variables (Q and h) and {B}
is vector of intercept values. A typical nonbanded
coefficient matrix [A] resulting from a dendritic
channel system is given below:
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—a1] 412 - - . - - - -1
az1 422823 324
a3l 432433 a4
a4 A2 A3 a44
an] 852 453 454
471 472 A73 a4
ag1 48z
ag] a9y ay3y dgy4
a1 @102 810.3 3104

T o121 422 - 123 124

Al 22
This matrix can be solved directly by the dou-
ble sweep method by introducing recursion equa-
tions for each of the individual components of a
dendritic channel system. This new noniterative
approach reduces the computer memory storage
requirments and also results in faster computatio-
nal times. In the forward sweep of the algorithm,
the new recurrent coefficient matrix is calculated.
In the backward sweep, the unknown values of
Q and h are obtained by back substitution into
the recurrent equations. The recurrent matrix
coefficients are given for the following four cate-
gories: converging channel sections, diverging
channel sections, converging junctions, and diver-
ging junctions. These coefficients are used to de-
termine the unknown @ and h values (%, X+,
where 1= 2-(station number)-+ 1) from the following
equations:

__LiMixin . o
peSt =L 2 el ()
x= TR A g g gy (1)

M.

The boundary conditions determine whether
the odd-numbered or even-numbered x; values
are assigned to Q or to h. For example, if boun-
dary conditions warrant the first x; value to be
assigned to Q; (as in the case of Q defined for
the upstream boundary), then the second x; value
is assigned to h,. All following odd-numbered x;
values would then be assigned to Q and even-nu-
mbered x; values would be assigned to h.

For converging channel sections, the recurrent
coefficients of the momentum equations are
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Mi-14
M; —a& — +a; 12
2= a) M .. az (12)
Ziy
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Z i Mi i3 b 13

in which the index i=2-(station number)—1.
For converging channel sections, the recurrent
coefficients of the continuity equations are

P24
2= A T tayg 14
Mi; ai1 M, .5 i (14)
M.
Mis a-13 M:” +aiz (15)
M.
Mis=—a- 4 ﬁ +a, (16)
Zi=-M; Zi-y LN (17)
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in which the index i=2-(station number).

For the diverging channel sections, the recur-
rent coefficients of the momentum equations
are

M.,
M;,= —aa,rid:‘;’ +ai3 (18)
M.
= A Ta (19)
Mi; ai+12 M., ai2
Mi,=—a., ”M : +aia (16)
i+12
Ziz - Mi_z ZH] 4 ZHZ +b; (21)

i4
M1+ 12 Mi-r2.3

in which the index i=2-(station number)—1.
For the diverging channel sections, the recur-
rent coefficients of the continuity equations are

Mio= —ay M s +a3 (22)
i+13
Zin
Zi: - aj = +bi (23)
* Misis

in which the index i=2-(station number).
The recurrent coefficients of the energy equa-
tions at channel junctions are
M-
Miz= —an M 2 tag 24)

1= 13
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Zi=—ay
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in which the index i=2-(station number).
For the converging channel junctions, the recu-
rrent coefficients of the continuity equations are

=M, Meis
Bay, M,y 2 Moo 1s (26)
D, = Zow,— May2 Zow 1 27
! M2uk~ 14
=~ Z 2yl . 28)
k=1 Bluk
¥ azuk-4
M=~ 2 a2 (29)
k=1 BZuk
NC )
Z=b~ 3. au D 30)
BZuk

in wheih NC is number of upstream branches,
uy is upstream section number along branch num-
ber k, and the index i=2-(station number)- 1.
For diverging channel junctions, the recurrent
coefficients of the continuity equations are

M= NCZH Agdy 1,2 .
3= AT 31
k=2 Moy -1
M= NC+1 T
4= a1 Z Ay (32)
k=2 Mde 13
¥ Zde 1
33
Z Mde -1,3

in which di is downstream section number at bra-
nch number k and the index i=2-(station num-
ber).

The recurrent coefficients of the energy equa-
tions at channel junctions are

Mde4
Mi,= —a; = +a; (34)
2 4 Mdeﬁ 3
Zi= a2 i, (35)
MQdkB

in which the index i=2-(station number)— 1.
Following the forward sweep, in the back subs-
titution sweep the conventional method is applied
to compute unknown values.
For converging sections, for stations just upst-
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ream from the junction, the general recursion
equation utilizes the junction Q and h values ins-
tead of the corresponding Q and h values on other
branches. Similarly, for diverging sections at sta-
tions just downstream from the junction, the ge-
neral recursion equation uses the junction Q and
h values rather than the values of these variables
corresponding to other branches.

5. Applications

In order to show applicability of the simulta-
neous dendritic channel solution algorithm prese-
nted in section 4, a hypothetical dendritic system
composed of five tributary channel segments and
three main channel segments is selected. A linear
discharge variation with a maximum discharge of
65 m®/s (2300 ft*/s) was provided as input data.
The tributary and main channel lengths were each
9.7km (6.0 miles). The channel widths were va-
ried from 30m (100 feet) for tributaries 1 and
2, 61 m (200 feet) for the reach downstream from
tributaries 1 and 2, 122 m (400 feet) for the reach
downstream from tributaries 3 and 4, to 152 m
(500 feet) for the downstream main channel. The
slope in each channel segment was 0.002 m/m
(foot/foot) and the Manning's roughness coeffi-
cient was 0.04. The initial discharge per unit wi-
dth was constant throughout the network. The ne-
twork was linked at three channel junctions. A
time increment of 10 min was used in the simula-
tion. The cross sections in the tributaries and the
main channel segments were spaced 1.6km(l
mile) apart from each other. At the junctions, ho-
wever, the distance between upstream and down-
stream stations were set to 30 m (100 feet)(in or-
der to satisfy the condition of no change in sto-
rage). The sequential models used for comparison
in this example treat the channel network as a
combination of single channel segments. Starting
from the upstream segments, flows are computed
in each branch and are input into the main chan-
nel segments. Two sequential formulations are
utilized in this comparison: the kinematic wave
formulation and the full dynamic wave formula-
tion. For the initial conditions, the same water
flow depths are assumed in the branchs and in
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Fig 1. Input data used in a dendritic channel si-
mulation
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Fig 2. Comparison of sequential and dendritic si-
mulations

the main channel segments. The input hydrogra-
phs which were used as the upstream boundary
condition in the simulation are shown in Fig.1
for each of the branches.

The computed outflow hydrographs at the dow-
nstream end of the channel are shown in Fig. 2.
As shown in Fig. 2, the outflow hydrograph produ-
ced by the dendritic simulation differs slightly
from the sequential kinematic and sequential full
dynamic simulations. Even though the peak dis-
charge by full dynamic wave approximation is
usually less than that by kinematic wave approxi-
mation(due to the faster attenuation of the dyna-
mic wave), this application shows the peak discha-
rge produced by the dendritic full dynamic wave
simulation model to be greater than the peak dis-
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charge produced by the sequential dynamic simu-
lation models and of the same order of magnitude
as the sequential kinematic wave model. This is
because the dendritic simulation model propagates
the downstream backwater effect, whereas the se-
quential models do not. For the example dendritic
simulation problem using 120 time steps and 48
cross sections, the computational time is just a
few seconds using an 386 IBM PC compatible mi-
crocomputer.

6. Conclusions

In this paper, a simultaneous solution algorithm
is presented for a dendritic channel system. This
algorithm is used in a linear unsteady one-dimen-
sional model. Using the algorithm, the coefficient
matrix storage requirements can be reduced from
2NX2N to 2NX4. This significant reduction of
the computer storage requirements makes possi-
ble the simulation of a large dendritic channel
system using even personal computers. Additiona-
lly, due to the banded nature of the proposed al-
gorithm, the computational time required for the
solution of this (ZNX4) system is considerably
faster than the nonbanded sparse matrix solution
algorithms. With the reduction of computer sto-
rage requirements and faster computational times,
a more efficient and accurate simulation of a den-
dritic channel system is accomplished. The propo-
sed algorithm contains a limitation on the number
of upstream converging or downstream diverging
channel segments at each junction. For the large
majority of the channel network problems this li-
mitation poses no restrictions. However, for cases
involving larger than three converging/diverging
channel segments per junction formulations would
require modification to include larger numbers of
channel segments.

APPENDIX: FORMULATIONS CITED IN TEXT
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Notation
06 . weighting factor.
T :top width of flow.
¥ . At/Ax.
At . time increment.
Ax © distance increment.
q - lateral inflow.
g . acceleration of gravity.
Q : discharge.
V  velocity.
S; ! frictional slope.
A ! area.
R ! hydraulic radius.
Q.i : upstream discharge at channel junction.
Qu : downstream discharge at channel junction.
K ' conveyance.
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