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Optimal Design of Municipal Water Distribution System
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Abstract

The water distribution system problem consists of finding a minimum cost system design subject
to hydraulic and operational constraints. Since the municipal water distribution system problem
is nonconvex with multiple local minima, classical optimization methods find a local optimum. An
outer flow search - inner optimization procedure is proposed for choosing a better local minimum
for the water distribution systems. The pipe network is judiciously subjected to the outer search
scheme which chooses alternative flow configurations to find an optimal flow division among pipes.
Because the problem is nonconvex, a global search scheme called Stochastic Probing method is
employed to permit a local optimum seeking method to migrate among various local minima. A
local minimizer is employed for the design of least cost diameters for pipes in the network. The
algorithm can also be employed for optimal design of parallel expansion of existing networks. In
this paper one municipal water distribution system is considered. The optimal solutions thus found
have significantly smaller costs than the ones reported previously by other researchers.
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1. introduction

The classical steady state approach to designing
water distribution systems involves the following
subproblems: (i) planning, (ii) design, and (iii)
analysis. The planning aspect involves the deter-
mination of the requirements of the system based
on population projections, including fire demand
estimates, in particular. The design problem invol-
ves the selection of an optimal topological layout
as well as the sizes of the distribution system
components. The analysis step involves the eva-
luation of flows and pressures in the system, ba-
sed on the given layout and sizes of the system
components. The problem consists of solving a
set of simultanegus nonlinear equations involving
the energy balance relationships, along with a set
of linear equations representing the continuity of
flow. The real design aspects of layout selection
and choosing suitable diameters for the pipes ho-
wever, are guite cumbersome.

A comprehensive review of optimization of wa-
ter distribution systems is given in Lansey and
Mays (1989). Rowell and Barnes (1982) and Mor-
gan and Goulter (1985) offered two different rou-
tes for selecting an optimal layout for a water
distribution system. While the Rowell and Barnes
scheme selects the minimum acceptable layout
configuration for a network which is a tree and
adds loop-forming links for the reliability of the
system, Morgan and Goulter’s heuristic scheme
deletes links from a potentially saturated network.
Loganathan et el. (1990) reported encouraging re-
sults by removing the constant head gradient as-
sumption used by Rowell and Barnes and offered
a computationally attractive TREESEARCH algo-
rithm.

The algorithm TREESEARCH iteratively const-
ructs a tree pipe network, which is a spanning
tree. The importance of such a spanning;tree in
determining an optimal solution for a looped net-
work has also been pointed out by Kessler and
Shamir (1989) and Bhave and Sonak (1992). Bhave
and Sonak (1992) and Sonak and Bhave (1993)
emphasize the importance of branching configura-
tion but have not offered a viable procedure for
generating these tree configurations whereas the
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algorithm TREESEARCH fills that void in a heu-
ristic manner. Once the optimal tree network is
found, a set of loop-forming (redundant) links
should be chosen to provide sufficient connectivity
in the case of failure of a tree link. Note that
a tree becomes disconnected even if a single link
fails. The algorithm REDUNDANCY of Logana-
than ef al. (1_990) determines an optimal set of
loop-forming (redundant) links that cover the set
of all possible tree link failures. The optimal redu-
ndant link set augmenting the optimal tree net-
work, yields a looped network that should be opti-
mized. Fujiwara and Khang (1990) and Kessler
and Shamir (1991) proposed a two-phase decom-
position method. These methods attempt to find
the global optimum. It is not uncommon to find
real problems which have cost or profit functions
defined over a nonconvex feasible region involving
local optima.

In this paper a municipal water distribution sy-
stem is considered. The general mathematical op-
timization model for a pipe network is nenlinear
and nonconvex, which may have several local op-
tima. While classical optimization methods find
only local optima, global optimization schemes
adapt the local optimum seeking methods to mig-
rate among local optima to find the best one. Of
course, without presupposing the nature of local
optima, a global optimum can not be guaranteed
except to declare a relatively best optimum. A va-
riety of general global optimization strategies have
been suggested and excellent reviews are given
in Torn and Zilinskas (1987) and Rinnooy Kan
and Timmer (1989). A two-stage search scheme
herein is employed on the municipal water distri-
bution system to find better optima.

2. Model Formulation

The following mathematical programming for-
mulation Problem (P1) is adopted for the general
pipe network optimization:

Problem (P1): Minimize
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where:
Cigp =unit cost for existing pipe in a link (i, )
Cxiy =unit cost for cleaning existing pipe in

a link G,))

Csex = unit cost for the £ th new diameter seg-
ment in a link G,Jj)

Xy and Xgq= length of existing diameter seg-
ment in a link @,})

X3y =length of ¢th new diameter segment
in link (,)

Cs  =unit cost of tank at node i

Cs  =hooster pump capital cost per pumping
head at node i

C» =pump capital cost per pumping head

at node 1
Cs and Cs=unit energy cost ($/kwh)
Hs, =additional head for tank node i
& =hottom area of tank at node i
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Hy,, =operating head of a booster pump at
node i for the /th loading

L =set of loadings

Hp,; =operating head of a pump at node i
under the I/th loading

Hs*e =elevation of tank at node i

H,t* =elevation of booster pump at node i

Hp® =elevation of pump at node i

Qu,: =pumping rate of a booster pump at
node i under the I/th loading
Qp.; =pumping rate of a source pump at node

i under the Ith loading
AT;; =pumping period for pump at node i un-
der the Ith loading

Y =gpecific weight of water

n..  =pump efficiency for pump at node i un-
der the ith loading

) =sget of hooster pump or tank nodes

S =get of source pump nodes

g, =consumptive use or demand at node

i for the !th loading
mn  =minimum pressure head required at
node k under the /th loading
Qupr =link flow for the /th loading
r(k) =a path through the network connecting
a source node (source pump or tank)
and demand node k

P =get of loops and paths connecting sou-
rce head nodes
b,; =zero in the loop and is head difference

between the source heads (source pu-
mps or/and tanks) for path p connec-

ting them
L =number of links in the network
Li; =length of a link G,))

Jmee and Juw=upper and lower bounds of the
hydraulic gradient ]

N =number of nodes in the network except
source nodes (source pumps and ta-
nks).

Sy and s are the indices of maximum and
minimum diameters of a link (i, j) for velocity res-
trictions:

Sy = max(t 4Q(‘1””sv""" t=1, T}, dun=y 4(3;;‘;13”‘
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sqp=min{t ‘ %;—ISV‘““, t=1,-, T}, and dumi
t

I‘/‘:‘-%l—“:: where, dmin and dm. are thmaximum

and minimum diameter f(?r velocity restrictions.
Vit and V™* are the minimum and maximum
velocity, T is the number of distinct pipe diame-
ters. The optitnal diameters are chosen from avai-
lable pipe diameters for a link (i, j} which lie on
between the maximum diameter and the mini-
mum diameter, say ¢:<dmin, ', dmaS<dr.

The hydraulic gradient for the /th loading from
the Hazen-Williams equation is used along with
the SI system of unit: Juip=Kkliy Q5 :Dress o
6= k2)Q5 Dy’ and Jmian.1=k3ni4>%§?D§(G§7 for
each option of pipe in which k1;=10.7/C*%, k2,
=107/CH*, k3=10.7/C}**, C. is the Hazen- Wil-
liams coefficient for existing pipe, C, is the Hazen-
Williams coefficient for cleaning existing pipe, C,
is the Hazen-Williams coefficient for new pipe, Q.
i 18 the given flow in link (i, j) for the Ith loading,
Dy is the diameter for existing pipe in link G, j)
and Dsyjy is the new diameter of ith segment in
link (i, j).

The objective function of Problem (P1) is the
summation of the pipe network cost, the storage
tank cost, the booster pump capital cost, the pum-
ping cost for booster pump, the pump capital cost,
the operating cost for source pump, respectively.
Constraints (2) represents the flow continuity
equations under the /th loading, constraints (3)
represents the hydraulic head requirement at
each node under the /th loading, constraints (4)
represents the sum of head losses in a path under
the Ith loading, constraints (5) represents the le-
ngth congtraints, constraints (6) represents the
hydraulic gradient bounding constraints, and con-
straints (7) represents the flow bounds under the
Ith loading. In constraints (3) the positive sign
is taken only if the path direction coincides with
the flow direction in link (i,j). In constraints (4)
the positive sign is taken only if any path connec-
ting two source pumping head nodes coincides
with the flow direction in link (,j). If there are
S source nodes (source pumps and tanks) in a
network, .C; number of constraints (4) should be
account for. The constraints will have to be dupli-
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cated for each demand pattern if more than one
demand pattern are to be considered.

3. Two-Stage Decomposition Method

Since Problem (P1) previously stated is nonli-
near, nonconvex programming problem which has
several local minima, assuring global optimal solu-
tion is an extremely difficult task because it re-
quires that there is no better point than a global
minimum in every neighborhood of the global mi-
nimum. A two-stage method for the solution of
Problem (P1) is suggested for the optimal design
of new water distribution systems as well as para-
llel expansion of existing networks. The pipe net-
work problem is decomposed into a two-stage pro-
blem comprising of an outer search strategy for
selecting link flows and a local minimizer for opti-
mal design of pipes in terms of selecting optimal
segment lengths of known diameters. This decom-
position does have merit provided efficient global
search schemes for the outer search strategy can
be found. The following two stage strategy Prob-
lem (P2) is suggested for the solution of Problem
(P1).

Problem (P2): Min|Min f(x)] ®

Qi L xex

in which Qg are the perturbed flows of an under-
lying near optimal spanning tree of the looped
layout satisfying constraint (2), X is the feasible
region made up of constraints (3)~(7), and f(x)
is the objective function of Problem (P1) for a
fixed link flows. It is worth noting that the optimal
layout tends to be a tree layout. Deb (1973) sho-
wed that a typical pipe cost objective was a con-
cave function which attained its minimum on a
boundary point resulting in a tree solution. Gess-
ler (1982) and Templeman (1982) also argued that
because optimization had the tendency to remove
any redundancy in the system the optimal layout
should be a tree. However, a tree gets disconnec-
ted even when one link fails.

It is observed that the inner Problem (P3) of
Problem (P2) given by
Problem (P3): Min f(x), for fixed flows 9

xe X

PN S X S



is a linear program which can be solved efficiently
by using commercially available codes. This phase
represents the local minimizer.

3.1 Outer Search Strategy

To choose the flows in the outer problem of
(P2) a Stochastic Probing method is adopted. The
solution behavior over the feasible region is easily
assessed. To make the search efficient, first a set
of flows corresponding to a near optimal spanning
tree of the network is found. The flows in the
looped network are taken as the perturbed tree
link flows by

Quy(loop) = Qqyitree) + Y + AQuij (10)

in which the sum is taken over loops ‘p' which
contain link (i,j) with positive loop change flow
AQ(=¢) used for clockwise flow. The stochastic
probing method is used to search the location of
the global loop flow vector €*. The method begins
with the construction of a probing probability dist-
ribution, with the density function P~N(, o),
where ¢ is the location parafneter (loop flow vec-
tor) and o is a scaling parameter, respectively.
The costs of f(g) are evaluated at a few loop flows
¢ sampled from the density function. The updating
location of loop flow ¢ and scale ¢ are based on
Gibbs-like distribution and the entropy of the cur-
rent distribution, respectively (Laud ef al., 1992).
The Stochastic Probing Method is given in detail
in the following.

Step 0. (Initialization) Select an initial location
of loop flow € and a scale factor 6" of a probing
distribution.

Step 1. (Generation step) At stage n (n20), ge-
nerate k independent, identically distributed loop
flows &q1..., & from P,~N(°, ¢"). Let ¢,=¢, and
E"=(Bnor "5 Enk)e

Step 2. (Update location) The updated location
€241 18 chosen from a point that is the highest
probability in the following Gibbs-like distribution;

1 ; .
Pr(8n¢1::8m):'2— € B(Ll,s:ﬂ}' 1= 0’ 1' oo k

k
where, Z= Z e Bl gpd
=0
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f(en) — f(€n0)

B{, i, eY)= min(fen), f(€n) ~ fr

in which: f is the objective of the linear program
(P1).

Step 3. (Updated scale) The rule for scale redu-
ction is of the form

i) Enr1=Ex and G, =0, if f(ens)2M(EL).

i) Gar1= WO If f(en. ) <f(e.), Where
_ Ent(n)
" log(k+1)

n

The scale reduction factor w, is based on the
entropy of the current distribution:

k

Ent(n)=— Zﬂ Pien+1=€n) log Plens 1 =€)

where P.(-) is given in the current distribu-
tion.

Step 4. (Stopping rule)

i} If 6,.1<0,, increase n by one and go to step
1.

ii) If on+1=0, and no improvement has been
obtained in the last few interations, save g,* and
f(e.*) and stop; otherwise go to Step 1.

3.2 Local Minimizer

If a set of flows is specified on a network feasi-
ble to the continuity equation (2), then Problem
(P1) becomes a linear programming problem and
there exists the global optimum associated the
link flows. The linear Program (P1) yields the op-
timal segment lengths Xyin Xz and x5 for va-
rious diameters dip and diu and the optimal
objective function value f*. These values are de-
pendent on the selected link flows satisfying con-
tinuity which are derived from the perturbing loop
flows for [ loadings: & =[AQ., ., AQ,;]. The foi-
lowing description to search for an appropriate
g locally is due to Fujiwara ef al. (1987). Define
f*(e)) be the optimal value and x(g) be the optimal
solution for Problem (P1). We are interested in
evaluating the rate of change of the optimal value
function f* with the changing ¢ values.

Fujiwara et al. (1987) suggest the quasi-Newton
procedure with Broyden-Fletcher-Goldfarb-Scha-
nno (BFGS) Hessian update as implemented in
Dennis and Schnabel (1983) for using the above
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Fig. 1. Hanoi Water Distribution System (No Scale)

direction to update the flows. In the proposed me-
thodology, first a global search strategy is used
to select different configuration of link flows. Se-
cond, the linear programs (P1) is solved for each
configuration of link flows. Only at this stage the
BFGS routine is implemented for possible refine-
ment about the best flow configuration from the
global search.

4, Analysis of Example Network

The first example network is the planned water
distribution network (Fujiwara and Khang, 1990;
Sonak and Bhave, 1993) in Hanai, Vietnam, which
is solved using the proposed procedure. Figure
1 shows the network consisting of 1 source node,
31 demand nodes, 34 links, and three loops. As
given in the previous studies, the following data
are used: Hazen-Williams; C=130 for all links;
conversion factor K=162.5 for flows in cubic me-
ters per hour and diameters in inches; exponents
for discharge and diameter are 1.85 and —4.87
respectively. Commercially available diameters are
12, 16, 20, 24, 30, and 40 inches and the cost per
unit length of pipes is given by 1.1d" in which
d is the diameter in inches. The minimum requi-
red flow in a link is 5 cubic meters per hour.
The link length, demand, minimum hydraulic
heads at nodes are given in Table 1.
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Table 1. Node and Link Data for Hanoi Water. Dis-
tribution Network

Node data Link data
Node | Demand |Minimum| Link Length,
number | m*hour jheand, m| number m

1 19,940 100 1 100
2 890 30 2 1,350
3 850 30 3 200
4 130 30 4 1,150
5 725 30 5 1,450
6 1,005 30 6 | 450
7 1,350 30 7 850
8 550 30 8 850
9 525 30 9 800
10 525 30 10 950
11 500 30 11 1,200
12 560 30 12 3,500
13 940 30 13 800
14 615 30 14 500
15 280 30 15 550
16 310 30 16 2,730
17 865 30 17 1,750
18 1,345 30 18 800
19 60 30 19 400
20 1,275 30 20 2,200
21 930 30 21 1,500
22 485 30 22 500
23 1,045 30 23 2,650
24 820 30 24 1,230
25 170 30 25 1,300
26 900 30 26 850
27 370 30 27 300
28 290 30 28 750
29 360 30 29 1,500
30 360 30 30 2,000
31 105 30 31 1,600
32 850 30 32 150
33 860

34 950

The decision variables of the Hanoi optimization
model based on Problem (P1) are the unknown
segment lengths of known six different candidate

KA



Table 2. Optimal Tree Link Flows for Hanoi Sys-

tem
Link Flow, Link Flow,
Number m*/hour Number m?/hour

1 19940.0 18 22100

2 19050.0 19 22700

3 8015.0 20 7915.0

4 7885.0 21 1415.0

5 7160.0 22 485.0

6 6155.0 23 5225.0

7 4805.0 24 3530.0

8 4255.0 25 27100

9 37300 26 1270.0

10 2000.0 27 370.0
11 1500.0 28 0.0
12 940.0 29 650.0
13 1205.0 30 360.0
14 590.0 31 0.0
15 3100 32 360.0
16 0.0 33 465.0
17 865.0 34 1270.0

diameters. The algorithm TREESEARCH (lLoga-
nathan ef al., 1990) is applied to obtain the optimal
tree layout and the optimal tree link flows. The
global tree network obtained by deleting links 16,
28, and 31 has a cost of $5812,889. The optimal
tree link flows given in Table 2 are then pertur-
bed to obtzin the flows for the looped network.
The procedure Stochastic Probing is implemented
to search the feasible region in the outer problem
of (P1) beginning with the perturbed optimal tree
link flows as the initial flows. The optimal loop
flows (AQ,, AQ,, AQy)=(229.71, 15.80, 10.98) with
a cost of $6,032,548 is then obtained. For the local
minimizer of (P1), the loop flows is further refined
by the gradient search (BFGS) to obtain the opti-
mal loop flow (AQ;, AQ: AQs)=(229.71, 15.80,
0.0) producing a cost of $6,031,807. For the gra-
dient search, the IMSL subroutine UMING is
used. However, the latter solution to the local mi-
nimizer of (P1) violates the minimum required
flow, 5 m*/hour. Fujiwara and Khang (1990) have
suggested a two phase procedure. In the first
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phase cost minimization problem has a nonlinear
convex objective in terms of head loss with a li-
near constraints region and yields optimal head
losses. Then in the spirit of the LPG (Linear Pro-
gramming Gradient) procedure, an improving di-
rection is generated with the aid of the Lagrange
multiplier of the Phase I constraints called NLPG
(Nonlinear Programming Gradient) direction. So-
nak and Bhave (1993) emphasize the importance
of a branching configuration and find the best tree
network using a heuristic manner. Once the opti-
mal tree network is found, a set of loop-forming
links satisfying just the minimum required fiow
is chosen to provided sufficient connectivity of the
network. The present approach yields a cost of
$6,032,548 which is an improvement over $6,319,
000 of Fujiwara and Khang, and $6,045,500 of So-
nak and Bhave. The optimal solution with mini-
mum flow of 5 m*hour is given in Table 3.

5. Conclusions

Optimization of water distribution systems by
conventional optimization techniques can not gua-
rantee a global optimum because the problem is
nonconvex with multiple local minima. A two
stage decomposition which uses readily available
linear programming routines within the frame-
work of a global search for solving the nonconvex
pipe networks is put forward. The two-stage deco-
mposition method employs the Stochastic Probing
method for the outer search conducted over flows
and the inner linear program designs pipes for
the selected flows. It is found that utilizing opti-
mal tree link flows with perturbations to obtain
looped network flows enhances the outer search
efficiency. Since Problem (P1) has several local
minima, each perturbation moves towards a local
optimum which indicated a set of loop flows. The
various locally optimal designs obtained as the ou-
ter search progresses, greatly aid in understan-
ding the feasible region in terms of the objective
function surface. As a practical matter, the metho-
dology helps the designer in understanding how
close the various designs are in terms of cost.

The results of the well established test prob-
lems for municipal water distribution system (Ha-
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Table 3. Optimal Solution for Hanoi System

(flow: m*/hour)

Node Link
Node Optimal Link Diameter, Length, Looped
Number Head, m Number inches m Link Flow
1 100.00 1 40 100.00 19940.00
2 97.17 2 40 1350.00 19050.00
3 62.00 3 40 900.00 7785.29
4 57.62 4 40 1150.00 7655.29
5 5197 5 40 1450.00 6930.29
6 46.15 6 40 450.00 59256.29
7 44.80 7 40 850.00 4575.29
8 43.22 8 40 850.00 4025.29
9 4197 9 30 547.70 3500.29
10 39.16 9 40 252.30 3500.29
11 3761 10 30 950.00 2000.00
12 34.20 11 24 1200.00 1500.00
13 30.00 12 24 3500.00 940.00
14 33.18 13 16 569.98 975.29
15 30.20 13 20 230.02 975.29
16 30.00 14 12 500.00 360.29
17 36.19 15 12 550.00 80.29
18 53.57 16 12 2730.00 21391
19 59.10 17 16 1463.07 1078.91
20 50.67 17 20 286.93 1078.91
21 35.15 18 24 800.00 242391
22 30.00 19 24 400.00 248391
23 44.33 20 40 2200.00 7930.80
24 38.56 21 16 508.58 1415.00
25 34.82 21 20 99142 1415.00
26 3051 22 12 500.00 485.00
27 30.01 23 40 2650.00 5240.80
28 37.57 24 30 1230.00 3534.82
29 30.01 25 30 1300.00 2714.82
30 30.00 26 20 813.32 1285.80
31 30.21 26 24 36.68 1285.80
32 32.14 27 16 300.00 385.80
28 12 750.00 15.80
29 16 1500.00 660.98
30 12 944.14 370.98
30 16 1055.86 370.98
31 12 1600.00 10.98
32 16 150.00 349.02
33 16 860.00 454.02
34 20 24649 1259.02
34 24 703.51 1259.02
—1382~— K AR RO



noi network) attest to the efficiency of the method
in finding better local optima. The method accom-
modates various pipe fittings in terms of their mi-
nor losses, pumps, and elevated tanks. Multiple
loadings are included by appropriate addition of
the constraints corresponding to each loading pat-
tern while retaining the pipe length variables to
be the same in all loadings. The pipe length varia-
bles remain the same because the same pipes are
utilized under all loadings. Moreover, the global
method is capable of choosing an optimal layout
with two connectivity for a reliable network. In
conclusioﬁ, the proposed method is comprehensive
and efficient in providing an optimal network de-

sign.
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