LNG 사업의 경쟁성 분석
— Competitive Analysis for LNG Projects —

吴吴俊*・崔聖守*・朴淵洪**

--- 목차 ---
Ⅰ. 머리말
Ⅱ. 경쟁성 평가 방법
Ⅲ. LNG 사업의 경쟁성 평가
Ⅳ. 결론말

Ⅰ. 머리말

경쟁성 분석(competitive analysis)은 생산물, 생산 단계 또는 특정 산업 전체에 대한 자료의 수집과 평가로서 현금흐름분석(cash flow analysis)을 이용한 사업 평가의 한 방법이다. 분석의 초점은 대부분 사업의 수익과 생산물의 목표가격(target price)에 집중되어 있다. 실제의 분석에서는 생산 규모나 사업 대안 자체의 선택이 분석의 대상이 된다. LNG 사업의 경우에는 최종 서비스의 단위 비용과 가스전, 액화설비, 해상수송, 인수 및 제기화와 같은 개개의 생산 및 공급단위 단계가 분석의 대상이 된다.

* 한국가스공사 가스경제연구실 연구원
** 한국가스공사 가스경제연구실 선임연구원

--- 267 ---
경쟁성 분석의 목적은 전략적인 사업계획을 수립하기 위한 정보를 제공하는 것으로 해당 산업내에서 분석 대상 기업이 차지하는 위치를 파악할 수 있게 해주고, 해당 기업과 타 기업, 분석 대상 프로젝트와 타 프로젝트간의 경쟁력 차이를 규명해 준다. 이 분석으로 현재의 경쟁력 상황을 파악할 수 있으며, 나아가 미래에 대한 전망에까지도 확장시켜 이 기법을 응용할 수 있다. 또한 생산물의 가격 예측을 분석에 포함시킬 경우, 새로운 프로젝트에 신규로 참여할 가능성이 있는 사업가가 지닌 잠재적 위협을 드러내 줄 수도 있고, 미래에 경쟁력을 상실하게 될 수도 있는 사업 운영 계획을 제고하도록 조기에 경고해 줄 수도 있다.

본 논문에서는 에너지 산업의 독특한 분야이고, 국내에서는 그 산업의 하류 부문의 사업이 주로 수행되고 있는 LNG (Liquefied Natural Gas) 사업의 단계별 비용 추정을 통한 경쟁성 분석의 수행 과정을 알기 보고, 응용의 보기로서, 가상적인 특정 프로젝트에 대한 적용 예를 소개함으로써, 에너지 산업에 대한 경쟁성 분석의 중요성과 의의를 제시하고자 한다.

이후에 이어지는 I장에서는 경쟁성 평가를 수행하기 위한 비용 추정과 평가 수행 방법에 대해 논의하고, II장에서는 LNG 사업의 개요와 단계별 비용 요소, 그리고 경쟁성 평가의 적용 결과와 민감도 분석 내용을 소개한다. 마지막으로 III장의 맥락에서의 경쟁성 분석의 중요성과 에너지 산업에의 적용 의미를 알아본다.

II. 경쟁성 평가 방법

1. 事業評価를 위한費用推定

경쟁성 분석을 위하여 자료의 체계적 수집과 처리 과정이 서슴되어야 한다는 것은 전혀 새로운 개념이 아니다. 그러나 비용요소의 설명과 자료 정리에 관한 대부분의 논의는 전통적인 제조업의 맥락에서 이루어져 왔으며, 생산라인과 상품 판매에 중점을 맞춘 것이었다. 이러한 고찰들이 현연자원 개발사업과 전혀 무관한 것은
아니지만, 개발적인 개념의 직접 도입에는 제한된 응용만이 가능하다. 천연자원 개발사업에서의 성공 비결은 생산비용을 최소화하는 것이다. 그러나 이 간단한 개념도 관련비용과 계획기간(planning horizon)을 고려할 때는 복잡한 분석 과정으로 변모한다.

이미 생산이 시작된 천연자원 개발 사업에서 인건비, 유지비, 광구사용료(royalties)와 총생산에 근거하여 지불된 종가세(ad valorem taxes) 등은 자원 생산을 위한 직접비용으로 운영비에 포함된다. 이러한 운영비를 총현금비용(total cash cost)이라 하며, 사업 수행을 계속하기 위해 현금으로 지출되는 경비로서 외의 항목 이외에 수선비, 보험료, 기타 간접비용에 해당하는 경상비용도 포함된다. 이러한 총현금비용의 추정값은 기존 사업자의 생산 경제성을 비교하기 위한 비교수치(relevant figure)로서 생산자의 단기 조업 중기 결정이나 단기 경쟁력 분석에 활용될 수 있다.

한편, 위에서 논의된 운영비에 사업 착수 초기비용의 회수 개념인 자기 자본 및 부채등에 대한 자본비용을 합한 것이 총비용(total cost)으로, 이는 회사의 장기적인 성장과 규모 및 경제성 확장의 결정에 중요한 영향 요소가 된다. 따라서 계획 및 개발단계에 있는 프로젝트의 경우 프로젝트의 경제성 결정을 위해서는 총비용 측면에서의 비교 수치가 활용된다.

상기의 논의에서와 같이 계획 및 개발 단계에 있는 프로젝트에 있어서는 총비용 측면에서의 비교에 의한 사업경제성 평가가 이루어져야 하는데, 결국 이는 산업 전체에 대한 비교 가능한 동등 자료로의 표준화가 필요함을 의미한다. 그러나 실제적으로는 총비용 및 총현금비용에 관한 자료는 일반적으로 구하기 힘들고, 구득했더라도 종시에 비교하기 힘들다. 비용은 민감한 사업정보이며 대부분의 회사에서는 이러한 자료를 은밀하게 유지되어야 하는 것으로 간주하고 있다. 비용수치가 공개 될 때에는 어떠한 요소들이 포함되어 있는지를 확인하는 것이 일반적으로 힘들고, 비용 요소들로 분리하는 것은 거의 불가능하다.

따라서 이러한 이유 때문에 산업의 비용 구조를 분석하여 비교 가능한 합리적인 비용 추정치를 도출하여야 한다. 비용추정(cost estimation)은 생산물, 생산 시스
템 또는 생산비용에 관한 분석과 판단에 기초하며, 모든 추정 방법은 경험의 범위를 예측하는 데 적합한 기준이 된다는 가정을 전제로 하고 있다. 비용추정에 사용되는 방법으로는 직관에 의한 것에서부터 상세한 수학적 분석 방법까지 다양하다. 이중 가장 많이 활용되는 평가 방법으로 기술비용평가(engineering cost estimation) 방법, 유사추정(estimating by analogy) 방법, 그리고 통계적 추정 방법이 있는데, 이후의 분석에서 활용되는 기술비용평가 방법에 대해서 고찰하고자 한다.

기술비용평가 방법은 기업 경영자료 및 재무자료(financial aggregates)로부터 상세 자료를 추출하는 시도는 하지 않으며, 공학적 전자에 의한 하급 수준에서부터의 상세한 조사와 그로부터 분석 추정된 비용들의 합성이라 할 수 있다. 따라서, 분석 대상 산업의 각 생산 단계에 대한 기술적인 원가 추정에 중점을 두고 있다.

기술비용평가 방법은 프로젝트 수행에 이용되는 기술 및 설비를 선정하고, 단위 단위로 산출량이 높은 단위 투입을 결정하여, 이에 투입된 단가를 적용, 물리적 투입 단위를 능가의 현금(cash equivalent)으로 환산함으로써 비용 추정치를 산정하는 절차를 거친다. 따라서 사업 구성을 항목이 자주 변하고 복잡한 시스템에서는 그러 유용한 추정 방법은 아니다.

이러한 기술비용평가 방법은 생산 기술면에서 복잡하지 않고 큰 변화가 없는 계획 및 개발 단계에 있는 프로젝트의 경쟁성 평가에 활용이 가능하고 있으며, 산업 내의 사용 기술면에서 큰 차이가 없는 여러 프로젝트들에 대한 사업평가(project evaluation) 수행을 가능하게 해 준다.

2. 競争性 評價 方法論

분석 대상이 되는 계획 및 개발 단계에 있는 프로젝트 평가를 위한 서로 다른 방향의 두 가지 관점이 있다. 첫째, 계획은 자본투자계획(capital budgeting) 관점으로, 먼저 주어진 프로젝트의 예상되는 수익을 가정하고, 이에 근거하여 내부수익률(internal rate of return)을 도출함으로써 분석 대상 프로젝트의 투자 가치를 평가하는 방법이다. 다른 하나는 경쟁성 분석(competitive analysis) 관점으로 대
상 사업의 평가를 위해 내부수익률을 미리 가정하고, 투여된 비용을 보전하기 위해 필요한 수입(revenue) 또는 단위 산출물당 비용(cost)을 추정해 내는 것이다.

여러 사업 대안에 대한 경쟁성 비교를 위해서는 사업 수행에 필요한 자본 비용 및 운영비에 대한 기술비용평가를 이용한 기술적 추정치(engineering based estimates)를 탐색하여야 한다. 그러나 이러한 비용 추정치는 직접 상호 비교가 불가능하며, 전체 프로젝트 또는 모체 프로젝트 내의 각 단계의 경쟁력 비교를 위해서는 단위 산출물 또는 단위 기준당으로 비교되어야 한다.

경쟁성 분석에서는 예상 수입을 가정하고 있지 않기 때문에 비교 대상 프로젝트에 대하여 투자에 대한 수익률을 개념인 내부 수익률이나 수입에서 비용을 차감한 이익을 현시점으로 할인한 순현재가(net present value) 등을 직접 비교할 수는 없으며, 사업에 투자된 자본에 대한 적정한 수익을 보장하고 투입된 비용을 보상할 수 있는 단위 기준당 수입 수준을 결정함으로써 분석 대안의 비용과 산출물 시장에서의 네트백(netback)을 직접적으로 비교할 수 있게 해준다. 경쟁성 분석의 결과로 부터 도출되는 이러한 비교수치는 단위 생산물당 서비스 비용(cost of service) 또는 최소필요수입(minimum required revenue)으로 언급되며, 이는 곧 특정 프로젝트의 경쟁적 소요비용이란 그 비용의 지출을 정당화시키는데 요구되는 가격수준의 경쟁성과 상통함을 나타내는 것이다.

따라서 경쟁성 분석에서는 기술비용 평가에 따른 기술적 비용 추정치와 미리 가정된 자본 수익률로부터 사업의 실현을 가능하게 하는 최소 필요 수입 또는 서비스 비용을 추정하게 된다.

서비스 비용을 결정하는 기본적인 논리는 다음과 같다. 먼저, 분석 대상 프로젝트에 대해 필요한 초기 자산 규모를 결정한다. 이 필요 자산을 구축하기 위해서는 자기자본과 부채를 조합하여 자본투자가 이루어져야 한다. 이러한 자본 조달은 초기 자본 자본비용 뿐만 아니라, 건설 기간중에 발생하는 건설비용비용, 생산 기간중에 발생하는 운전비용등도 포함한다. 다음으로 자본회수율(capital recovery factor)이 결정되며, 단위 생산물에 대한 운영비용 및 순수로 서비스 비용에 포함시킨다.

다음의 Ⅲ장에서는 LNG 사업의 개요를 알아 보고, 이에 경쟁성 분석을 적용하

Ⅱ. LNG 사업의 경쟁성 평가

1. LNG 사업의 특성 및 개념

가. LNG 사업의 특성

LNG 사업 계획은 단순하고 관련 기술 또한 상당히 잘 정립되어 있지만 주요요건에 있어서의 업무관계는 아주 복잡하고 다양하다. 주목해야 할 LNG 사업의 주요 특성은 먼저, LNG 사업은 다른 용도로는 이용될 수 없는 특수한 설비 때문에 넓어질 자본을 필요로 하며, 산업이 발달할 만한 성장을 이루었지만, 수송부분에 있어서 만큼은 석유와 같은 대규모 시장을 아직 갖고 있지 않다는 것이다.

결과적으로 LNG 프로젝트의 결실을 가져오기 위해서는 모든 필요 조건들이 미리 갖추어져야 하며, 상대 국가와의 분명한 계약 약래를 위한 단일 목적의 가스 공급이 이루어져야 한다. 그리고 적절한 액화설비와 신뢰할 만한 선박 운항자를 포함한 수송 협정들이 준비되어야 한다. 또한 지분능력이 있는 확실한 구매자와의 장기적인 계약이 필요하다.

현시점에서의 LNG 시장은 다른 에너지시장과 달리, 소수 현물시장을 제외하고는 독특한 장기 프로젝트로 이루어져 있으며, 공급자로부터 구매자에 이르기까지 일련의 제조 시스템으로 밀접하게 연결되어 있다. 장기적적인 면에서 있어서의 필요에 따라 언제나 시장에 참여할 수 있는 많은 구매자와 공급자를 가지고 있는 석유시장과는 달리 LNG 시장은 여러 면에서 독특한 특성을 가지고 있다.

LNG 프로젝트는 구매자 및 판매자, 선박업자 그리고 여러 부문의 많은 공급자
가수반되어야 하는 장기적인 사업으로 이의 협상에는 많은 시간이 소요된다. 또한 LNG 프로젝트의 참여자들은 협상의 추진에 앞서 초기단계에 정부의 원칙적인 승 인을 먼저 얻어야만 한다.

가스보유국은 모두가 LNG 프로젝트에 있어 막대한 자금의 확보가 있어야 하는 제정적 문제를 갖게 되는데, 이에 대한 정부와 금융기관의 승인이 사업 수행의 필요 선결 조건이 된다. 그러나 구매자측은 통상, 정부기관을 포함하고 있지 않기 때문에, 구매자는 관계 당국의 승인을 필요로 한다.

가스의 생산에서부터 LNG로 인도되기까지의 각 단계는 여러 가지 다른 방식으로 구성되어질 수 있다. 예를 들면, (1) 누가 역할을 소유하고 운영할 것인가, (2) 가스는 구매자, 판매자 또는 독립된 제3자 중 어느 측에 의해 수송되어 질 것인가, (3) 각 단계에 있는 서로 다른 참여자에 어느 정도의 위험을 배분할 것인가 하는 여러 가지 문제점에 대해 해결책이 제시되어야만 한다. 이러한 모든 것들은 계약의 문제들이고 모든 프로젝트에서 이들 문제는 약간 다르게 취급될 수도 있다. 그러나 각각의 계약은 경제적 있는 국제 기업이 운영되는 것처럼 서로 정확히 맞추어져야 하며, 각 단계에서 사업 수행에 필요한 투자재원을 확보해야 한다.

나. LNG 사업의 페스비 개요

LNG 프로젝트는 가스의 개발, 가스의 체질 및 수송, 액화, 해상 수송, 인수 및 재가화능의 요소가 일관된 시스템으로 연결되어야 할 필요가 있으며, 이를 일반적으로 LNG Chain이라 부른다.

1) 가스 생산 및 해산 수송

LNG Chain의 첫 단계는 가스의 생산과 이를 액화/일시저장하는 설비가 있는 해안으로 수송하는 것인데, 여기서의 가스는 천연가스전으로부터 나오는 것과 석유 시추 때 나오는 수반가스가 있지만 후자는 과거에 확보되었던 시장이 없었기 때문에 모두가 현장에서 소각되어졌다. 생산된 가스는 일정 압력으로 해안에 위치한 액화시설로 수송되어지는데, 생산 및 해안수송을 위한 주요 자본 비용 항목은 다음과
간다.

— 시추경
— 채집시스템
— 가스 처리 플랜트
— 가스 파이프라인과 압축기지

2) 液化 및 输出 船積

가스 해산 수송의 다음 단계는 수송된 가스를 탈수, 탈탄산등 가스 조성에 적합한 정화 처리를 한 후 액화시키는 과정, LNG 선박에의 적화를 위해 일시적으로 LNG를 저장하는 과정과 액화된 가스를 선박에 선적하는 단계로서 여기에는 다음과 같은 주된 자본 지출 요소를 포함하고 있다.

— 액화플랜트
— 저장 및 선적 시설
— 환면설비

3) 海上 輸送

LNG의 해상 수송은 보행 적하 뱅크를 갖춘 전용 선박에 의해 이루어진다. 적하 뱅크는 의제에서의 입양을 차단하여 조칙온을 유지하도록 설계되어 있다. 해상 수송 분야는 대체로 업무나 자본을 필요로 하며, 현재 특수장치를 채용한 LNG 선박 한척의 비용은 대략 $260밀.으로, 이 선박은 -160℃에 이르는 조칙온 액체를 선적, 수송하게 된다. 이 온도에서 액화된 가스의 체적은 액화되기 전 가스 체적의 약 1/600 정도에 해당된다.

대체적으로 LNG선박은 유조선에 비해 속도가 빠르며, 주요 LNG 사업에 쓰여져 온 LNG 선박들은 120,000 - 133,000m³의 용량을 가지고 있는 표준형이다.

4) 引受 및 再気化

LNG 프로젝트의 마지막 단계는 수송되어 온 LNG를 인수하여 특수 제작된 저
장탱크에 저장하고, 초저온인 LNG를 고온의 물질과 열교환하여 기체 상태로 제기화한 다음, 발전소 및 도시가스용 연료로 송출, 공급하는 과정이다. 이러한 도입은 사업단계에 필요한 자본 소요 항목은 다음과 같다.

- 항만시설
- 하역시설
- 저장 및 운송시설
- LNG를 제기화하기 위한 기화시설
- 주 간선망 파이프라인과 압축시설

2. LNG 사업의 기술적, 경제적 분석

LNG 사업의 경쟁성 분석을 위한 기초 작업으로 사업 단계별로 소요 자산 및 운영에 관한 비용 자료를 추정하여야 하는데, 이러한 목적으로 수행되는 각 사업 단계의 기술비용평가의 자본 및 운영비용 분석 요소와 방법에 대해 논의한다.

가. 가스 생산/해양 운송 장비 측면

현재의 가스 생산은 일반적으로 해상 가스전 개발로서, 해상에서의 가스전 개발과 생산된 가스를 해안의 액화천연기까지 수송하는데 필요한 설비를 갖추어야 한다. 이러한 설비는 해상 가스생산시설, 가스 처리시설, 주거시설 그리고 해안까지의 수송을 위한 파이프라인시설 등이다.

해상 가스개발 프로젝트는 대상 지역에 따라 비용면에서 큰 차이가 있다. 서로 생산규모가 비슷한 두 개의 개발 프로젝트라 할 지라도 가스정 상황과, 개발 지역의 수심, 생산시설 위치, 기대되는 가스정 생산량, 가스정 수용 감소 등의 요인에 따라 매우 큰 차이가 발생한다. 해상 생산 및 가스 체집 파이프라인에 대한 자본비용은 다른 해상 프로젝트의 실적으로 구성된 데이터 백그라프로부터 도출해 낼 수 있다.

가스 생산 및 체집 설비 운영비용은 생산설비의 용상 보조비용, 생산정 인건비, 체
집 파이프라인 비용등으로 이루어진다. 해상 생산설비에서의 생산정 인건비는 지역에 따라 전체 자본투자의 5~10%의 범위를 차지한다. 최근 생산설비의 자본비용이 빠른 속도로 상승하여 왔는데 이는 안전 장치 설치와 제어시스템이 보다 복잡해진 데 기인한다. 따라서 이러한 경향은 과거에 비해 전체 자본비용에 대한 연간 운영 비용의 비율 감소로 나타나고 있다.

나. 냉동플랜트 비용

해안에 위치한 액화플랜트를 구성하고 있는 설비 및 공정은 매우 다양하다. 구성 설비로는 해상에서 생산된 원료가스를 인수하는 설비, 콘덴서트가 생산될 경우의 체집, 저장 설비, 원료가스의 처리 및 액화설비, LNG 저장 및 선박 적재 설비등이 다. 일반적으로 항만 및 집안 설비 비용과 일시 또는 고정 하부구조 비용등도 육상 액화플랜트비용에 포함된다.

자본 비용 규모는 플랜트의 디자인 및 사용 설비, 지역 편차등을 고려하여 산정되며, 유사한 LNG 프로젝트의 비용자료로부터 추정된다. 육상 액화플랜트의 자본 비용 역시 항만 및 집안시설 구축등이 개발 지역에 따라 달라지는 특성으로 지역적 편차가 매우 크게 나타난다.

LNG 액화플랜트 운영조건의 다양성과 이의 비용을 표준화하는 것을 불가능하게 만들고 있다. 어떤 특정한 플랜트의 산출비용은 임지조건 및 수질원, 환경 제약, 가스성분, 인건비 그리고 액화기술등에 의해 좌우되기 때문에 이의 비용은 매우 일반적인 형태로 결정되어질 수 밖에 없다. 신규 LNG 프로젝트의 실적자료분석에 근거하여 연간 플랜트 운영비용은 플랜트 자본비용의 3.75%정도에 달하는 것으로 알려져 있다. 따라서 운영비용의 결정에 있어서 중요한 요소는 정확한 자본비용의 산정이며, 이에 앞서 자본비용 산정을 위한 장치설비 및 건설비용등에 관한 정확한 판단이 선행되어야 한다.
다. 수송선체 범용

경제적으로 LNG를 수송하기 위한 선박의 크기는 수송 선박의 선적 용량, 수송거리 및 연간 수송량, 선박의 운항 속도등에 따라 결정되며, 수송선박의 수송능력에 영향을 미치는 주요 요소로는 선박의 안전성 및 수송 신뢰성, 선적 용량 및 운항 속도이다. 또한 기타 관련 요소로는 접안설비 수, 기후에 따른 입항 지역, 항만 및 선적/하역 규제 그리고 드라이드킹(dry-docking)에 대한 가정등이며, 액화물탱크 및 인수기지의 LNG 저장 능력 및 운영, 보수 조건등도 LNG 수송능력에 영향을 미치는 요소이다.

한편, LNG 프로젝트에 사용될 선단 규모를 결정하기 위해서는 먼저 사용 선박의 용량을 선정하고, 이에 운항속도, 운항거리, 연간 수송량, 즉, 교역규모를 고려하여 야 한다. 〈그림 1〉은 LNG 교역의 선단 규모를 선정하기 위한 상관계계 그래프이다. 이로부터 표준 선박 용량 125,000m³, 운항속도 17knot, 운항 일수 345일을 가정한 경우의 운항거리와 교역 규모에 따른 사용 선박수를 산정할 수 있다.

연간 선박 운영비는 요구되는 수송 용량에 따라 다르다. 또한 수송 선박이 국적 선인지, 아니면 용선인지에 따라서도 운영비용에 차이가 있다. 연간 수송 선박 운영비는 고정 운영비와 변동 운영비로 나누어지며, 고정 운영비는 선원 인건비, 유지 및 보수, 보험, 기타 소모품비용을 포함한다. 연간 고정 운영비는 선박 1척당 $7mil.이므로 추정된다. 한편, 변동 운영비에는 항만사용료와 연료비가 포함된 다. LNG의 해상수송중에 발생하는 증발가스가 연료 소요량의 상당부분을 공급한

- 277 -
다. 〈표 1〉은 LNG 교역의 공간적 거리를 나타낸 LNG 수송선의 편도 운항거리 를 내고 있다.

라. 引受 및 再氧化基地 費用

인수기지의 자본비용을 일반화하기는 매우 어려운데, 이는 LNG 인수기지 건설 비용이 많은 가변요소와 설계에 따라 차이가 심하기 때문이다. 그러나 몇가지 일반 법칙은 적용될 수 있다. 인수 및 재기화 기지에서는 LNG 액화플랜트와는 달리 설 비에 소요되는 비용은 덜 중요한 요소이다. 예를 들면, 액화플랜트에서 설비가 차
표 1 LNG 수송선의 편도 운항 거리

<table>
<thead>
<tr>
<th>수출 국</th>
<th>선적 항</th>
<th>수입 국</th>
<th>하역 항</th>
<th>운항 거리 (해리)</th>
</tr>
</thead>
<tbody>
<tr>
<td>아부다비</td>
<td>Das Island</td>
<td>일본</td>
<td>Sodegaura</td>
<td>6,300</td>
</tr>
<tr>
<td>알제리</td>
<td>Arzew</td>
<td>벨기에</td>
<td>Zeebrugge</td>
<td>1,552</td>
</tr>
<tr>
<td>알제리</td>
<td>Skikda</td>
<td>프랑스</td>
<td>Pos-sur-Mer</td>
<td>398</td>
</tr>
<tr>
<td>알제리</td>
<td>Skikda</td>
<td>스페인</td>
<td>Barcelona</td>
<td>354</td>
</tr>
<tr>
<td>알제리</td>
<td>Arzew</td>
<td>미국</td>
<td>Everett</td>
<td>3,300</td>
</tr>
<tr>
<td>브루나이</td>
<td>Lumut</td>
<td>일본</td>
<td>Negishi</td>
<td>2,380</td>
</tr>
<tr>
<td>인도네시아</td>
<td>Badak</td>
<td>일본</td>
<td>Niigata</td>
<td>2,950</td>
</tr>
<tr>
<td>인도네시아</td>
<td>Arun</td>
<td>한국</td>
<td>Pyeong Taek</td>
<td>2,927</td>
</tr>
<tr>
<td>호주</td>
<td>Withnell</td>
<td>일본</td>
<td>Sodegaura</td>
<td>3,689</td>
</tr>
<tr>
<td>말레이지아</td>
<td>Bintulu</td>
<td>일본</td>
<td>Sodegaura</td>
<td>2,480</td>
</tr>
<tr>
<td>미국</td>
<td>Kenai</td>
<td>일본</td>
<td>Negishi</td>
<td>3,250</td>
</tr>
</tbody>
</table>

* 1 해리 (nautical mile) = 1,852m.

지는 비중은 전체 비용의 15%인데 반해, 인수기지에서는 10% 이내이다.

LNG 액화플랜트와는 달리, 인수기지는 관련 공정이 그다지 다양하지 않다. LNG 인수기지는 저장과 송출이라는 중요한 두 부분의 시설로 이루어져 있다. 저장부분은 저장탱크와 이를 보조하는 증발가스 압축기로 구성되어 있으며, 송출 부분은 공정부분으로 고압 및 저압 송출펌프, 제온축기, 기화기등으로 구성되어 있다. 이 부분은 인수기지 총비용의 40%, 총계 LNG 프로젝트의 8%를 차지하고 있다. 또한 인수기지 전체 에너지 소비의 98%를 전유함으로써 비용절감이 이루어질 수 있는 분야이다.
3. LNG 사례의 경쟁성 평가: 적용 사례

가. 기준 프로젝트의 설정 및 가정

신규 LNG 프로젝트의 규모를 설정하는 기준으로는 분석 대상지역의 가스매장량, 잠재 시장, 자본 이외에 LNG 구매자들이 요구하는 안정 공급기준 등이 있다. 즉, 2열 미만의 LNG 생산설비(liquefaction train)를 갖춘 프로젝트에 대해서는 공급 중단 사태가 발생할 수 있다는 이유로 도입 고려 대상에서 제외하여 왔다. 따라서 현재의 기술 수준과 경제적 규모를 감안한다면, 2개의 train이 설치되어 계별 train당 연간 LNG 2백만톤을 생산할 수 있는 4백만톤 생산 규모의 프로젝트가 최소 경제규모로 간주되고 있다. 또한 매장량 측면에서는 가스의 손실등을 감안하여 현재의 경제적 여건하에서는 5TCF(Trillion Cubic Feet) 이상의 가스 매장량을 필요로 하며, 연간 4백만톤의 LNG를 생산하는 규모가 LNG 산업의 상류 부문이라 할 수 있는 생산과 액화 부문의 한계 규모에 해당한다.

한편, 생산 및 액화 설비 설립 지역은 비교적 낮은 비용 지역으로 알려진 Borneo지역이며, 교역 상대국은 일본으로 편도 항해거리 3,500해리의 신규 인수/계기화 기지에 LNG를 수송하는 프로젝트이다.

기준 프로젝트에 대해, 서비스 비용에 기초한 경영성 분석을 수행하기 위하여 설정된 제반 경제 및 재정적 가정은 (표 2)에 정리되어 있다.

나. 서비스비용(최소필요수입) 유형 결과

LNG 프로젝트의 4 단계중 두번째 단계인 LNG 액화/수출 단계의 단위 액량 (MMBtu, 252,000Kcal)당 서비스 비용 즉, 최소필요수입은 아래 (그림 2)에 나
표 2 기존 프로젝트의 경제 및 재정적 가정

<table>
<thead>
<tr>
<th>재정적 가정</th>
<th>생산</th>
<th>영화/수출</th>
<th>해상수송</th>
<th>인수/재기화</th>
</tr>
</thead>
<tbody>
<tr>
<td>건중투자이자율</td>
<td>(년)</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>이자율</td>
<td>(년)</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>부채 기간</td>
<td>(년)</td>
<td>12</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>초기부채비율</td>
<td>(%)</td>
<td>60%</td>
<td>60</td>
<td>80%</td>
</tr>
<tr>
<td>설용</td>
<td>(%)</td>
<td>40%</td>
<td>40</td>
<td>0%</td>
</tr>
<tr>
<td>감가상각기간</td>
<td>(년)</td>
<td>10</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>세후 자산수익률</td>
<td>(년)</td>
<td>16%</td>
<td>16%</td>
<td>14%</td>
</tr>
<tr>
<td>가동 저연기간</td>
<td>(년)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>유통자본</td>
<td>(%)</td>
<td>5%</td>
<td>5%</td>
<td>3%</td>
</tr>
</tbody>
</table>

| 경제적 가정 | | | | 5% | |
|------------|-----------|----------|----------|----------|
| 인플레이션 | (년) | | | 5% | |
| 실질LNG가격상승 | (년) | | | 0% | |
| 실질자본비용상승 | (년) | | | 0% | |

타나 있다.

〈그림 2〉는 서비스 비용의 호름을 1991년 불변가로 표시한 것인데, 백 아래층은 원료가스 비용을 나타내며, 두번째 층은 운영비와 생산량 손실을 나타내고 있다. 아래에서 세번째와 네번째 층은 부채에 대한 이자와 원금을 나타내고 있으며, 부채는 12년에 걸쳐 상환된다. 다섯번째 층은 소득세를 나타내는데, 감가상각에 따른 세전 수입 소멸로 인하여 법인세 부담은 8차년도에서 시작된다. 백 위층은 가기자본에 대한 수익을 나타내고 있다.

불변가로 표시된 영화/수출 단계의 서비스 비용은 불변 FOB (Free On Board)와 동등하다. 불변 FOB 서비스 비용은 MMBtu ($^{10^6}Btu$) 당 1.72이며, 영화/수출
단계의 원료가스 비용은 MMBtu당 $0.23이다. 따라서 액화/수출 단계에 대한 서비스 비용은 MMBtu당 $1.49이다. 이 서비스 비용 중 운영비와 생산량 손실은 MMBtu당 $0.28이며, 자본에 대한 비용인 부채상환, 세금, 자기자본 수익은 MMBtu당 $1.21이다.

〈그림 3〉은 LNG chain 전체에 대한 볼륨 서비스 비용을 나타내고 있다. 이에 따르면 1991년 볼륨가로 원료가스 비용은 공동생산물 이익(coproduction credit)을 제외하고 MMBtu당 $0.23이며, 액화/수출단계 비용은 $1.49로 나타나 FOB 서비스 비용은 MMBtu당 $1.72가 된다. 해상 수송비는 MMBtu당 $0.71로 추정

자료: 〈그림 1〉과 동일
LNG 사업의 경쟁성 분석

(그림 3) LNG 사업 단계별 서비스 비용

자료: (그림 2)의 동일

화기는 CIF(Cost, Insurance and Freight) 서비스 비용은 $2.43으로 산정 된다. 또한 신규 인수/재기화 비용은 MMBtu당 $0.40으로 CIF 서비스 비용에 이를 둘러싼 제기화 LNG의 최종 서비스 비용은 MMBtu당 $2.83으로 산정 된다. Cedigaz와 Gas Strategies의 자료에 따르면 1992년 현재 일본의 인도네시아 LNG CIF 수입가격은 MMBtu당 $3.71로 나타나 있다. 따라서 이 예제 프로젝트는 일본을 포함한 태평양 시장에 있어 상당한 네트워크 이익을 가지고 있는 것으로 분석되었다.
다. 敏感度 分析

기준 프로젝트의 인산 4백만톤 LNG를 비교적 낮은 비용지역인 Borneo지역에서 생산하여 편도 항해거리 3,500해리인 일본의 신규 인수/재기화 기지에 수송하는 서비스 비용을 기준으로 하여 규모 효과, 거리 효과 그리고 비용 상승효과에 대한 민감도 분석을 수행하였다.

규모 효과 분석을 위한 민감도 분석에서는 연간 생산 및 수송하는 LNG의 규모를 2백만톤, 4백만톤, 6백만톤으로 각각 변화시켰을 때의 서비스 비용의 변화를 고찰하게 되며, 수송 거리의 변화에 대한 효과 분석을 위해 편도 항해거리 6,500해리에 달하는 쾅르시아만에서의 LNG 수송을 가정하여 분석을 수행하였다.

기준 프로젝트에서는 실질 비용의 상승이 없는 것으로 분석하였으나, 민감도 분석을 위해 2000년까지 4%의 실질 비용 상승을 가정하여 서비스 비용에 미치는 영향을 고찰하였다. (표 3)은 서비스 비용에 대한 민감도 분석 결과를 나타내고 있다.

<table>
<thead>
<tr>
<th>수송 거리 (해리)</th>
<th>기준 project</th>
<th>규모 효과</th>
<th>거리 효과</th>
<th>비용 상승</th>
</tr>
</thead>
<tbody>
<tr>
<td>생산 규모 (MMPTY)</td>
<td>3,500/4</td>
<td>3,500/2</td>
<td>3,500/4</td>
<td>6,500/4</td>
</tr>
<tr>
<td>단계별 서비스비용</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>생산</td>
<td>0.23</td>
<td>0.53</td>
<td>0.23</td>
<td>0.19</td>
</tr>
<tr>
<td>액화/수송</td>
<td>1.49</td>
<td>2.75</td>
<td>1.49</td>
<td>1.27</td>
</tr>
<tr>
<td>해상 수송</td>
<td>0.71</td>
<td>0.74</td>
<td>0.71</td>
<td>0.70</td>
</tr>
<tr>
<td>인수/재기화</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>누적 서비스비용</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>원료가스</td>
<td>0.23</td>
<td>0.53</td>
<td>0.23</td>
<td>0.19</td>
</tr>
<tr>
<td>FOB</td>
<td>1.72</td>
<td>3.28</td>
<td>1.72</td>
<td>1.46</td>
</tr>
<tr>
<td>CIF</td>
<td>2.43</td>
<td>4.02</td>
<td>2.43</td>
<td>2.16</td>
</tr>
<tr>
<td>최종재기화LNG</td>
<td>2.83</td>
<td>4.42</td>
<td>2.83</td>
<td>2.56</td>
</tr>
</tbody>
</table>

자료: 〈표 2〉의 동일
LNG 사례의 진해성 분석

민감도 분석 결과에 따르면, 규모 효과 분석에서 2백만톤으로 생산 규모를 줄였을 경우에 액화/수출부문의 서비스 비용이 80%이상 증가하였는데 이는 LNG 공급 안정성을 위해 액화설비를 2열 이상 구축하여야 하는 이유로 액화 비용이 상승한 때문이다.

또한 6백만톤으로 생산규모를 늘린 경우에는 약 10%의 최종 서비스 비용의 감소가 나타나 규모 증대에 따른 평균비용의 감소로 규모의 경제(economies of scale)가 존재하고 있다.

기준 프로젝트에서 전체 서비스 비용 중 해상 수송비용의 비중이 25%인데 비해 해상 수송거리를 2배로 증가시킨 경우에는 이 비중이 38%로 나타남으로써 해상 수송비용의 비중이 급격히 증대되었다. 이는 단적으로 LNG 교역에서 수송거리가 중요한 경쟁력 영향 요소임을 보여주고 있다.

V. 맨앞말

경쟁성 분석은 자료의 수집과 평가에서부터 최종적인 경쟁성 비교수치의 추정까지 일련의 과정을 수행하는 사업성 평가의 한 방법으로 본 논문에서의 최종 비교수치는 단위 산출물당 최저필수수입 또는 서비스 비용의 수준이었다. 경쟁성 분석은 기대되는 수익의 규모와 회수 수익률 등에 중점을 두고 분석하는 것이 아니고 필요한 수익을 보장하였을 경우의 사업 실현 가능성이니 본서 대상 프로젝트의 산업내에서의 위치등에 관심을 두고 분석을 수행한다. 따라서 경쟁성 분석은 산업의 비용구조를 묘사할 수 있게 하고 각 기업의 위치를 확인해 줄 것이며 이 위치에 해당하는 위험과 기회를 축적적으로 순조롭게 이해할 수 있도록 평가해 줄 것이다.

경쟁성 분석은 에너지자원 사업에 있어 특히 중요하다. 최종 생산물은 전형적으로 물리적·화학적 특성에 있어 큰 차이가 없는 특정 유형의 에너지자원 및 광물자원으로 다른 생산자의 생산물로의 전환이 가능한 대체가능재화(fungible commodity)이다. 이러한 대체 가능 특성을 지닌 산업에서는 제품의 상표는 큰 의미를 갖지 못
오경준 · 최성수 · 박연홍

하고 제품의 차별화도 매우 어렵다. 따라서 에너지자원 산업에 있어서의 사업의 성
패는 생산물의 가격 대비 생산비용의 경쟁성과 안정적인 공급 능력에 달려 있다.
따라서 계획 및 개발 단계에 있는 에너지자원 사업의 수행을 위한 경쟁성 분석은
단위 산출당 서비스 비용과 시장 가격과의 차이를 규명해 주고, 산업내에서의 경쟁
력의 위치를 파악해 주면서, 사업 수행 결과에 직접적인 규준을 제공한다. 또한
산업내에 존재하는 한계 프로젝트들에 대한 경쟁성 분석을 수행함으로써, 산업 전
체의 공급규모에 따른 서비스 비용의 추이를 나타내는 산업 공급 곡선을 도출해 볼
수 있어, 산업 전체로서의 분석 확장이 가능하며, 이로부터 장기적인 에너지자원 가
격예측도 가능하다.

LNG 사업은 투자 규모가 방대하고, 투자 회임 기간 또한 장구하여 일반 에너지
자원 산업의 특성을 모두 갖추고 있지만, 특별 주문적 특성으로 인한 폐쇄 시스템
의 구성과 ‘take or pay’의 의무인수 계약 조건들은 기타 에너지 자원의 사업수행
결과는 사뭇 다른 양상을 보이고 있다. 따라서 사업 결정 변부이 어렵고, 상호보
장을 위한 자본의 투자가 요구되는 사업 특성으로 인하여 신중한 사업평가가 요구
되며, 이는 경쟁성 분석을 통한 사업 실현 가능 성 과악이 더욱 중요함을 의미한다.
또한 LNG 가격은 시장에서 결정되는 것이 아니고 구매자와 판매자의 공급 계약에
의해 결정되므로, 경쟁성 분석을 통한 서비스 비용의 과악은 협상에서의 유리한 위
치를 점할 수 있게 해 준다.

또한 민감도 분석 결과에서도 알 수 있듯이 서비스 비용을 통한 경쟁성 분석은 비
용구조 과악을 통해, 전략 요소를 찾아내고, 목표시장 가격에 대비한 구성 가능한
프로젝트의 규모와 공간적 거리를 알려줄수록 프로젝트의 구성요소인 생산, 액
화, 수송, 재기화의 조합에 따른 경쟁성 변화에 대한 통찰을 가능하게 한다.

국내 LNG 사업은 급격한 수요증가로 90년대 중반 이후 초과 소요 가동에 대한
추가 확보가 필요한 실정이다. 따라서 경제적이고 안정적인 LNG 도입을 위해서는
무엇보다도 먼저, 실현 가능한 프로젝트 유도에 대한 경쟁성 분석을 수행하고 이들
프로젝트들의 경쟁성을 비교하는 사전 검토 작업이 이루어져야 한다. 이를 위해서
는 축적된 자료와 평가 역량이 필요된다, 이 부분에 대한 국내 기술정보 보유 수준
LNG 事业의 競争性 分析

및 분석 역량은 매우 비약한 편이다.
따라서 에너지산업을 포함한 모든 사업 분야에서의 성공적 사업 수행을 위해서는
산업 정보의 지속적인 수집과, 이를 분석, 평가할 수 있는 역량을 배양하는 데, 보
다 많은 시간과 노력을 기울여야 할 것이며, 결국 이러한 정보와 역량은 구체적인
경제적 가치로 나타나게 될 것이다.

참고문헌

1. 한국가스공사, 「천연가스 사업 실무」, 1993.
 1984.