PROPERTIES OF FINITE GROUPS WHOSE IRREDUCIBLE CHARACTER DEGREES ARE PRIMES

JOONG-SANG SHIN

1. Introduction

Let G be a finite group and let $\text{Irr}(G)$ be the set of irreducible complex characters of G. Let $\text{c.d.}(G)$ be the set of degrees of all irreducible characters in $\text{Irr}(G)$.

I.M. Issacs and D.S. Passman have been obtained a characterization of groups with the property that every nonlinear irreducible character has a prime degree [4]:

Theorem 1. Let G be a finite group with the property that every nonlinear irreducible character has prime degree. Suppose further that at least two distinct primes occur. Then there exist primes p and q, $p \neq q$ such that G has one of the following normal series

(I) $G > N > Z(G) = Z(N)$

with $G/Z(G)$ and N both nonabelian.

(II) $G > N > A = Z(N) \times R$

with both G/A and N nonabelian and $Z(G) = Z(N)$. Here R is elementary abelian of order r^m for some prime r and N/A acts irreducibly on it. Also $r^m - 1 = q(r^m - 1)$.

Conversely if group G has either of the above structure then $\text{c.d.}(G) = \{1, p, q\}$.

By the above theorem, a group G with the property that every nonlinear irreducible character has a prime degree is precisely a group with $\text{c.d.}(G) = \{1, p, q\}$, $p \neq q$ primes.

It is not hard to show that the above Theorem can be restated as follow (cf. [6, chapter II]).

Received August 24, 1992.
THEOREM 2. Let G be a finite group with $\text{c.d.}(G) = \{1, p, q\}$, where p and q are distinct primes. Let K be a maximal element in the set

$$\{\ker \chi | \chi \in \text{Irr}(G), \chi(1) \neq 1\}$$

and let $N/K = (G/K)^I$. Then G/K is a Frobenius group with kernel N/K and $Z(G) = Z(N)$ and one of the following holds.

(I) $|G : N| = p$, N/K is an elementary abelian q-group of order q^2, $K = Z(G)$, $c.d.(N) = \{1, q\}$ and $c.d.(G/K) = \{1, p\}$

(II) $|G : N| = p$, N/K is an elementary abelian q-group of order q, $K = Z(G) \times R$ where R is an elementary abelian q-group of order r^m, $c.d.(N) = \{1, q\}$ and $c.d.(G/K) = \{1, p\}$

REMARK. (i) In (I) of Theorem 2, if $p > q$ then it must be $p = 3$ and $q = 2$. (ii) The case when $p > q$ does not occur in (II) of Theorem 2.

Throughout this paper we fix the notation in Theorem 2 and we say that G is of type (I) and of type (II) if $c.d.(G) = \{1, p, q\}$ and G satisfies the conclusion (I) and (II) in Theorem 2 respectively.

Let G be a finite group and let p and q be primes with $p \neq q$. We denote the matrix of degree type of G by

$$d.t.(G) = \begin{bmatrix} 1 & p & q \\ x & y & z \end{bmatrix}$$

if the following two conditions hold:

(i) $c.d.(G) = \{1, p, q\}$

(ii) G has exactly x linear characters, y irreducible characters of degree p and z irreducible characters of degree q.

Our main result is the following.

THEOREM. Let G be a finite group with $c.d.(G) = \{1, p, q\}$, $p \neq q$ primes. Let s be the order of $Z(G)$. Then the following hold.

(i) If G is of type (I) or of type (II) with $r = q$, then the commutator subgroup G' is of order q^3 and

$$d.t.(G) = \begin{bmatrix} 1 \\ p \\ q \end{bmatrix} \begin{bmatrix} p & q \\ (q^2-1)p & (q-1)pq \\ q & q \end{bmatrix}$$
(ii) If G is of type (II) and $r \neq q$, then $G' = G$ is of order qr^m and
\[
d.t.(G) = \begin{bmatrix}
 1 & p & (q-1)s \\
 p & (q-1)s & (r^m-1)p^s \\
 1 & p & (r^m-1)p^s
\end{bmatrix}
\]

Remark. It can be shown that the commutator subgroup G' is isomorphic to the extra special group $M(q)$ of order q^3 if G is of type (I) or of type (II) with $r = q$ and G' is the semidirect product of an elementary abelian group of order r^m and a group of order q.

For notations and terminologies one confer [3].

2. Properties of a finite group G with $c.d.(G) = \{1, p, q\}$

For convenience we describe the following well known theorems without proof (cf. [3])

Theorem (Clifford). Let $N < G$ and let $\chi \in \text{Irr}(G)$. Let ϕ be an irreducible constituent of χ_N and suppose that $\phi = \phi_1, \cdots, \phi_t$ are the distinct conjugates of ϕ in G. Then $\chi_N = e(\phi_1 + \cdots + \phi_t)$, where $e = [\chi_N, \phi]$ and $t = |G : I_G(\phi)|$.

Theorem (Ito). Let $A < G$ be abelian. Then $\chi(1)$ devides $|G : A|$ for all $\chi \in \text{Irr}(G)$.

Theorem (Gallagher). Let $N < G$ and let $\chi \in \text{Irr}(G)$ be such that $\chi_N = \xi \in \text{Irr}(N)$. Then the characters $\beta \chi$ for $\beta \in \text{Irr}(G/N)$ are irreducible, distinct for distinct β and are all of the irreducible constituents of ξ^G.

Now we investigate some properties of a finite group G with $c.d.(G) = \{1, p, q\}$.

Proposition 2.1. Suppose that G is of type (I). Let Q be a Sylow p-subgroup of N. Then $Q' = G'$ and $N' = G''$ is of order q.

Proof. Let P be a Sylow p-subgroup of G. Since $G/Z(G) = G/K$ is of order pq^2, the factor group $P/Z(P)$ is a cyclic group and so P is abelian. It follows [3, cor 12. 34] that every Sylow s-subgroup of G is abelian normal in G for all primes $s \neq p, q$. Thus we have $|G' \cap Z(G)|$ is a power of q (cf. [3, theorem 5.6]).
Since $N/K = (GK)'$ is of order q^2, we have

$$q^2|Z(G)| = |N| = \frac{|G'||Z(G)|}{G' \cap Z(G)}$$

and so $|G'| = q^2 |G' \cap Z(G)|$. Thus G' is a q-group.

Since c.d.$(N) = \{1, q\}$, the subgroup N has a normal q-complement L (cf. [3, cor 12.2]). Since $|N : Z(N)| = q^2$, we have $L \subset Z(N)$. Now it follows that $Q \triangleleft N$ since $N = QL$. Moreover, Q is also a Sylow q-subgroup of G and a characteristic subgroup of N. Thus $Q \triangleleft G$ and $G' \subset Q$.

Let B be a normal subgroup of N with $|B : K| = q$. Then $B/Z(B)$ is cyclic and hence B is abelian. Now it follows from [3, lemma 12.12] that

$$|B| = |N'| |Z(N)| = |N'||K|$$

and so $|N'| = q$.

Since $N = G'Z(G) = QZ(G)$, we have $N' = G'' = Q'$. Thus the proposition holds.

Proposition 2.2. Suppose that G is of type (II) and $r \neq q$. Then $G'' = N'$ and N' is an elementary abelian group of order r^m.

Proof. Let Q be a Sylow q-subgroup of N. Since $K = Z(G) \times R$ for some elementary abelian group R of order r^m, it follows that $G/Z(G)$ is of order pqr^m and so $|Q/Z(Q)| \leq q$. Thus Q is abelian.

Since c.d.$(N) = \{1, q\}$, every Sylow subgroup of N is abelian (cf. [3, cor 12.34]). By Theorem 5.6 of [3], we have

$$N' \cap Z(N) = \{1\}.$$

Note that K is abelian and N/K is cyclic of order q. Thus we have the following (cf. [3, Lemma 12.12])

$$|K| = |N'||K \cap Z(N)| = |N'||Z(N)|.$$

Since $N'Z(N) \subset K$, we have $K = N' \times Z(N)$.

Now it follows from $K = R \times Z(N)$ that $N' \cong R$ and so N' is an elementary abelian group of order r^m.

Note that $N = G'K$ and $N' \subset G'$. Thus we have

$$N = G'K = G'N'Z(N) = G'Z(G)$$

and so $N' = G''$.

PROPOSITION 2.3. Suppose that G is a finite group with $c.d.(G) = \{1,p,q\}$. Then the set of all irreducible characters of G of degree q is precisely the set of all irreducible constituents of ϕ^G, where ϕ runs over all nonlinear irreducible characters of G'.

Proof. Let ϕ be an irreducible character of G' of degree q. If χ be an irreducible constituent of ϕ^G, then Clifford Theorem yields that $\chi(1) = q$.

Now we show that every irreducible character of G of degree q is an irreducible constituent of ϕ^G for some $\phi \in \text{Irr}(G')$ of degree q.

Let χ be an irreducible character of G of degree q. Assume that χ_N has a linear constituent θ. Then Gallagher Theorem yield that θ^G has no linear constituent since χ is an irreducible constituent of θ^G. Moreover, θ^G has no irreducible constituent of degree p since $\theta^G(1) = p$ and χ is an irreducible constituent of θ^G. Thus every irreducible constituent of θ^G is of degree q. Since p and q are distinct primes, this is not the case. Thus χ_N is an irreducible character of degree q and so $N' \not\subseteq \ker \chi_N$.

Now let ϕ be an irreducible constituent of $\chi_{G'}$. Then, by Clifford Theorem, we have

$$\chi_{G'} = e(\phi_1 + \phi_2 + \cdots + \phi_t)$$

where ϕ_1, \cdots, ϕ_t are the distinct conjugates of ϕ in G and $e = [\phi, \chi_{G'}]$. Since

$$\bigcap_{i=1}^t \ker \phi_i = \ker \chi_{G'} = G' \cap \ker \chi_N \not\subseteq N'$$

we have $N' \not\subseteq \ker \phi_i$ for some i.

Since $N' = G''$ by Proposition 2.1 and Proposition 2.2, the character ϕ_i is not linear. This implies that $\phi(1) = q$ and so $\chi_{G'} = \phi \in \text{Irr}(G')$. Thus χ is an irreducible constituent of ϕ^G. This completes the proof.

Let G be a finite group. If $H \triangleleft G$ and χ is a character of G with $H \subseteq \ker \chi$, then there is a unique character $\tilde{\chi}$ of G/H defined by $\tilde{\chi}(Hg) = \chi(g)$. This formula can also be used to define the character χ if $\tilde{\chi}$ is given. It is immediate consequence that χ is irreducible if and only if $\tilde{\chi}$ is. In this paper, we will not distinguish between χ and $\tilde{\chi}$.
3. Main Result

In this section we will prove our main Theorem.

Theorem 3.1. Suppose that G is of type (I) or of type (II) with $r = q$. Let $s = |Z(G)|$. Then the commutator subgroup G' is of order q^3 and

$$d.t.(G) = \left[\begin{array}{ccc} 1 & \frac{p}{q^3} & \frac{(q^2-1)s}{pq} \\ \frac{ps}{q} & \frac{q}{p} & \frac{(q-1)ps}{q} \end{array} \right]$$

Proof. Let $\phi \in \text{Irr}(G)$. If $\phi(1) = 1$, then $\phi_K \in \text{Irr}(K)$ and

$$N' \subset K \cap G' \subset \ker \phi_K.$$

Thus $\phi_K \in \text{Irr}(K/N')$.

Now suppose that $\phi(1) = p$. Since $K = Z(G)$, every irreducible constituent of ϕ_K is invariant in G. Thus it follows by Clifford Theorem that $\phi_K = p\theta$ for some $\theta \in \text{Irr}(K)$. Since $c.d.(N) = \{1, q\}$ and $|G : N| = p$, we have

$$\phi_N = \chi_1 + \chi_2 + \cdots + \chi_p$$

for some linear characters $\chi_1, \chi_2, \cdots, \chi_p$ of N.

Since $N' \subset K \cap \ker \chi_i = \ker(\chi_i)_K$ for all $i = 1, 2, \cdots, p$, we have

$$N' \subset \ker \phi_K.$$

Since $\phi_K = p\theta$, it follows that $\theta \in \text{Irr}(K/N')$ and ϕ is an irreducible constituent of θ^G.

In the proof of Proposition 2.3, we showed that if ϕ is an irreducible character of G of degree q then $\phi_N \in \text{Irr}(N)$ and $N' \not\subset \ker \phi_N$. In this case we have $N' \not\subset \ker \phi_K$ since $N' \subset K$.

Now we can conclude that $\theta \in \text{Irr}(K/N')$ is extendible to G and every irreducible constituent of $\theta \in \text{Irr}(K) - \text{Irr}(K/N')$ is of degree q.

Since K/N' is abelian and G/K has p linear characters and $\frac{(q^2-1)}{p}$ irreducible characters of degree p, it follows by Gallagher Theorem that G has $p|K : N'|$ linear characters and $|K : N'|\frac{(q^2-1)}{p}$ irreducible characters of degree p.
Properties of finite groups whose irreducible character degrees are primes

If \(\phi \in \text{Irr}(G) \) is of degree \(q \), then \(\phi_K = q\theta \) for some \(\theta \in \text{Irr}(K) \) - \(\text{Irr}(K/N') \). In this case, \(\theta^G \) has \(p \) irreducible constituent of degree \(q \). Thus \(G \) has \(p(|K| - |K : N'|) \) irreducible characters of degree \(q \).

Note that \(G \) has \(|G : G'| \) linear characters. Thus \(|G : G'| = p|K : N'| \) and then

\[
p|K : K \cap G'| = p|K^G : G'| = |G : G'| = p|K : N'|
\]

Thus \(|K \cap G' : N'| = 1 \). That is, \(K \cap G' = N' \).

Since \(|N : K| = q^2 \) and \(|N'| = q \), we have \(|G' : K \cap G'| = |N : K| = q^2 \) and

\[
|G'| = |G' : K \cap G'| |K \cap G'| = q^2 |N'| = q^3.
\]

Remark. If \(G \) is of type (II) with \(r = q \), then \(|N : Z(G)| = q^2 \) (cf. [4]). The proof of this case is similar to type (I).

Theorem 3.2. Suppose that \(G \) is of type (I) and \(r \neq q \). Let \(s = |Z(G)| \). Then the commutator subgroup \(G' \) is of order \(qr^m \) and

\[
d.t.(G) = \begin{bmatrix}
1 & p & (r^m q - 1) p s \\
p & (q - 1)s & (r^m - 1) p s
\end{bmatrix}
\]

Proof. Let \(\theta \) be an irreducible character of \(Z(G) \). Assume that \(\theta^N \) has \(x \) linear constituents and \(y \) irreducible constituents of degree \(q \). Then since \(\theta \) is invariant in \(G \) and \(\text{c.d.}(N) = \{1, q\} \), we have the equation

\[
qr^m = \theta^N(1) = x + qy^2.
\]

Note that \(q|(r^m - 1) \) (cf. Theorem 1). Thus \(x \neq 0 \) and so \(\theta \) is extendible to \(N \). Since \((N/Z(G))' = N'Z(G)/Z(G) = K/Z(G) \), \(\theta^N \) has \(\frac{r^m - 1}{q} \) irreducible constituents of degree \(q \) by Gallagher Theorem.

Note that every irreducible character of \(N \) of degree \(q \) is extendible to \(G \) (cf. Proof of Proposition 2.3).

Since \((\theta^N)^G = \theta^G \), Gallagher Theorem yields that \(\theta^G \) has \(\frac{p(r^m - 1)}{q} \) irreducible constituents of degree \(q \).

Assume that \(\theta \) is not extendible to \(G \). Then since \(\theta \) is invariant in \(G \), we have the equation

\[
pqr^m = \theta^G(1) = xp^2 + qy^2
\]
where x and y are the numbers of irreducible constituents of degree p and of degree q respectively. But since $y = \frac{p(r^m - 1)}{q}$ and $p \nmid q$, it is not the case.

Thus every $\theta \in \text{Irr}(Z(G))$ is extendible to G.

Now, by applying Proposition 2.3 to $G/Z(G)$, it follows that $G/Z(G)$ has p linear characters, $\frac{(q-1)}{p}$ irreducible characters of degree p and $\frac{(r^m-1)p}{q}$ irreducible characters of degree q. Thus, by Gallagher Theorem, G has $p|Z(G)|$ linear characters, $\frac{(q-1)|Z(G)|}{p}$ irreducible characters of degree p and $\frac{(r^m-1)p|Z(G)|}{q}$ irreducible characters of degree q.

Finally we show that G' is of order qr^m.

Note that G has $|G : G'|$ linear characters and that

$$
N/G' = G'Z(G)/G' \cong Z(G)/G' \cap Z(G).
$$

Thus we have

$$
p|Z(G)| = |G : G'| = p|Z(G) : G' \cap Z(G)|
$$

and so $G' \cap Z(G) = \{1\}$.

Since $G'Z(G)/Z(G) \cong G'/G' \cap Z(G)$, we have

$$
|G'| = |G' : G' \cap Z(G)||G' \cap Z(G)|
$$

$$
= |G'Z(G) : Z(G)|
$$

$$
= |N : Z(G)|
$$

$$
= qr^m.
$$

We have proved THEOREM which is introduced in section 1.

References

Department of Mathematics
Kyung-won University
Sung-nam 461-200, Korea