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Computation of Green’s Tensor Integrals in Three-Dimensional
Magnetotelluric Modeling Using Integral Equations

Hee Joon Kim* and Dong Sung Lee*

ABSTRACT: A fast Hankel transform (FHT) algorithm (Anderson, 1982) is applied to numerical evaluation of many
Green’s tensor integrals encountered in three-dimensional electromagnetic modeling using integral equations. Effi-
cient computation of Hankel transforms is obtained by a combination of related and lagged convolutions which
are available in the FHT. We express Green’s tensor integrals for a layered half-space, and rewrite those to a
form of related functions so that the FHT can be applied in an efficient manner. By use of the FHT, a complete
or full matrix of the related Hankel transform can be rapidly and accurately calculated for about the same compu-
tation time as would be required for a single direct convolution. Computing time for a five-layer half-space shows
that the FHT is about 117 and 4 times faster than conventional direct and multiple lagged convolution methods,

respectively.

INTRODUCTION

In recent years numerical modeling of three-dimen-
sional (3-D) targets in studies relating to electrical
and electromagnetic (EM) prospecting has attracted
a large number of workers (Hohmann, 1975; Ting
and Hohmann, 1981; Lee et al, 1981; Das and Ve-
rma, 1982; Wannamaker et al. 1984; Madden and
Mackie, 1989). Such studies involve the calculation
of resistivity, induced polarization, magnetotelluric
(MT) or EM response of a 3-D arbitrarily shaped
body embedded in a conductive earth excited by a
natural or an artificial source. Mathematical tools to
solve these problems are an integral equation meth-
od, differential equation methods (finite difference
and finite element), and a combination of aforemen-
tioned methods known as a hybrid technique. Among
these techniques the integral equation method re-
quires the smallest computer storage because unknown
fields need be found only in anomalous bodies (Ho-
hmann, 1988). However, computation cost is consid-
erably high even in the integral equation approach
and one must numerically evaluate very large sets
of secondary Green's tensor integrals that are expres-
sed as Hankel transforms of integer order in the inte-
gral equation formulation (Hohmann, 1975; Das and
Verma, 1982; Wannamaker, 1984).

Since a digital linear filter method was introduced
by Ghosh (1971) to estimate Hankel transform inte-
grals, many applications of it were found in geophysi-
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cal fields. Anderson (1975, 1979, 1982) presented dig-
ital filtering algorithms for efficient and accurate
evaluation of complex Hankel transforms of integer
order. His filters have been extensively used by many
geophysicists. For example, Wannamaker et al
(1984) used subroutines ZHANKO and ZHANKI1
(Anderson, 1975), and Wannamaker (1991) employed
subroutine ZHANKS (Anderson, 1979) in their 3-D
MT modelings. However, although Anderson’s (1982)
latest filter, subroutine HANKEL, is the most power-
ful one because it can perform both related and lag-
ged convolutions, its application to geophysical fields
is little known.

In this paper, we solve a time-consuming problem
in 3D MT modeling using Anderson’s (1982) fast Han-
kel transform (FHT) algorithm. Layered half-space
tensor integrals are expressed in a form so that FHT
can be applied in an efficient manner, followed by
a computer timing example for a five-layer model
run three different ways (Anderson, 1975, 1979,
1982).

TENSOR INTEGRALS

Wannamaker et al. (1984) presented Green’s tensor
functions for an electric dipole in a layered conduc-
tive earth. Among these Green’s functions, for more
accurate evaluation of EM fields, secondary electric
and magnetic Green’s functions were partly modified
by Wannamaker (1991). Unfortunately, there are
many typographical errors in Wannamaker et al.
(1984) and Wannamaker (1991). Therefore, for the
sake of others who may wish to use our work, correct
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formulas are listed in Appendix.

Each Hankel transform tensor integral for a lay-
ered half-space is, in general, defined by integral ker-
nels with recursive expressions in terms of many com-
plex square-root and exponential functions. Ob-
serve that the integral kernels shown in Appendix are
related each other with many common factors. Such
related functions are rapidly computed by a modified
FHT with an external subroutine RELFUN as de-
scribed in detail by Anderson (1982, p. 365-6). Ander-
son (1984) presented a procedure to construct sub-
routine RELFUN for the homogeneos half-space ten-
sor integrals expressed by Hohmann (1975) and for
layered half-space tensor integrals derived by Wan-
namaker et al. (1984). In this paper, we show the
revised tensor integrals listed in Appendix in a form
so that the modified FHT can be interfaced with a
suitably coded subprogram RELFUN. While Ander-
son (1984) presented only the electric tensor integrals
for 1>, we derive both electric and magnetic tensor
integrals for all cases of /=j, I>j and I<j.

Each kernel function for the electric and magnetic
elements for /=j can be represented in terms of sev-
eral common complex recursive factor defined as

CI(A')_ RW[e iz dj - l)+vA7M]/D
CZ(X)— RIF[e"‘I(Z dy- I)+xA :I/D
C3(/D” R7M[e-ul( -dy |)+A7M]/D (l)

where
— L tuglz- d)
D=e ujlz - df 1)’

and symbols containing R, A and related terms are
explicitly listed in Wannamaker et al. (1984). By use
of the common functions in equation (1), the general-
ized FHT related functions can be written for use
in subprogram RELFUN as

Fb= ulG,—C; (/1)] +kf[Gz+ Cz(/l)]/llh

()= ALG+C (/I)J/Uh

Fyh= AG+C (/l)l

F(H)=2[G+ (),

F()(/l) =) [Gs +G, (/1)]’
FA)=1G+Ci(H)]-[G,—C:(H],
FoH=AG+C(D)],

Fio(A)=FyA),

Fu(H=Fs(A/4, 2)

where

G,=4"D,
G,="AT D,
G=AMD.

Similarly, for >/, kernel functions are defined as

CiH= *B,;M[*A Metuh/ R,
Cih= ; (4, e /' RY ],
Cih=" B,,“[ZA Metutf' R, €}

Then the related functions are expressed as

Fi(A=uC(ALG\—1/D]+kCAHG2+ 1/D]/u;
Fs()=2C;M G2+ 1/D ),

FAH)=1C\(HG\+ I/D:I/uﬁ

F5(/1) = /PC.Z(/D[GI + l/D]/llj,
FoW)=uCxAHLG,—1/D/u;,

F(A=C(DLG+ 1/D]—wuC )G~ 1/D ] /u;,
Fo)y=wiuCx(NLG,~1/D]/u,

Fif(A)=wF3(4),

Fu()=Fs)/4 C)]

where

G[: ’R??D,
GZ:JR?D9
D:e+ upz 111)q
Wzé_,'/il.
Finally, for /<j, kernel functions are defined as

Cl(,{) = BI:M [euit 4 ”+XATM:|
C)="B F[e‘ we & DL ATE]
CI(/{)—“ /M I:e Ui dj |)+ZAJ ]a (5)

The related functions are expressed as

Fi()=u,CHLD—G\1+k; CoALD + G2y,
Fy(A)=ACA LD + G )/u;,
F{H=AC(HD+G.],
Fs(A)=ACHID+ G\ u;,
Fo()=uCx(ND— G\ Vuj,
FoA=CAD+G ] ~wu, CA LD — G2 u;,
Fo(A)=wiu,Ci[D~ Gy l/uj,
Fm().) = WF}(}V),
FiA)=Fs(A/A, (6)
where
= R? /D,
Gy= th/Dv
D:€ T up(z d/',
Wzi,'/il.
A general form of elecric and magnetic Hankel

transforms of order n for the layered half-space is
denoted by

Y for m=1, 3-6,

f Fm (/{un (/{")d/t { )},/‘Im o for m= 7’ 9-11.

where

n:{ 1 for m=1, 6, 7, 11,
0 for m=3-5, 8, 10.
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COMPARISON OF COMPUTATION TIME

Examination of the set of kernels in equations (2),
(4) or (6) reveals that other common algebraic expres-
sions can be saved and reused again in subprogram
RELFUN, such as *AJ'-M and all exponential factors.
Then, the modified FHT can be called once for a
fixed z and Z, and for any desired range of r, by
interfacing with RELFUN, which returns F,(1) for
all m. The dimension of the FHT output complex
array is now (N, 5) and (&, 9) for only electric tensor
integrals and for both electric and magnetic tensor
integrals, respectively, where

N: Sln(rmax/rmin)+ 1,
and
0<Fmin<r<Fmaxe

A computation time comparison between direct con-
volution, lagged convolution and the FHT for only
the electric tensor integrals was run on an IBM com-
patible (80386) system with mathematical coprocessor
using Microsoft FORTRAN 5.0 Optimizing compiler.
For a five-layer half-space with /=4 and j=2, and
N=150, which covers a very large range of r, 10 °
<r<107, a small-sized output complex array of dimen-
sion (150, 5), or 750 related and lagged convolution
integrals is required. The results are summerized in
Table 1.

Table 1 shows that the FHT run nealy 117 and
4 times faster than using direct and lagged convolu-
tion, respectively, to compute all 750 integrals, and
382 and 5 times fewer function evaluations. The total
number of FHT function calls is very small (239),
and is about the same as for a single direct convolu-
tion. The direct and lagged convolution algorithms
used in comparision were ZHANKS (Anderson,
1979) and HANKEL (Anderson, 1982), respectively.
From Table I, we can see that multiple lagged con-
volutions are much faster than direct convolution, but
are not as fast as with the FHT using both lagged
and related convolutions.

The range or r chosen [10 ¢, 107] for this example
may not occur in practical situations. Nevertheless,
Table 1 indicates the constant time and function ra-
tios expected for a five-layer model, regardless of the
range of r selected. Only reducing the number of
layers would significantly reduce these ratios. The ex-
cluded cases, I<j and all magnetic elements, are also
required in the complete MT integral equation solu-
tion, and would add further to the time and function
evaluations shown in Table 1.

Table 1. Comparison between direct, lagged and FHT con-
volutions for 750 integrals for a five-layer half-space.

Method  Function Ratio to CPU time Ratio to
calls FHT calls (s) FHT time
Direct 90497 382 1299.13 116.99
Lagged 1115 5 4207 379
FHT 239 1 11.10 1

CONCLUDING REMARKS

Wannamaker (1991) used a modified direct convo-
lution subprogram ZHANKS (Anderson, 1979) to in-
corporate lagged convolutions in evaluating their base
point grids in the space of z and z'. The multiple
lagged convolution method reduces the Hankel trans-
formation phase of MT modeling to only a small
part, about 10% for a three-layer half-space. By use
of the FHT, a futher reduction of this phase is expect-
ed, about 4%. Subsequent phases of interpolations
for transform arguments within columns of the out-
put transform array will produce the required inte-
grals, and can be substituted in the appropriate Green’
s tensor functions.

In 3-D EM modeling in layered media, use of the
FHT can significantly reduce the initial Hankel trans-
form evaluation phase compared to direct convolu-
tion, or even as compared to multiple lagged convo-
lutions done for each column vector of the base point
grids. The possible FHT savings should be an incen-
tive to seek still further improvements in subsequent
phases of the over all 3-D EM modeling.
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APPENDIX TENSOR GREEN'S FUNCTIONS

Symbols and related terms used in this appendix
are explicitly listed in Wannamaker et al. (1984, p.
67-74). In layer j, the particular and complementary
potential solutions give rise to primary and secondary
tensor elements, i.e.,

G="G}+°G, (A-h
and
I="G+5G! (A-2)

The primary electric elements are (Wannamaker
et al., 1984)

Pva:Tzle{["%ﬁ]” AR ()
PGij_PGE = ;1931. ,{[ (x-x'l){(zy—y') ]P}{,’}’ (A-3b)
R s x,;(f Dl ado)
AR gt s
and
Gy —ﬁ[ e ]” LA LRIEL (A
where R=|r—+| and
b B =

e R 1 ik,
(o S (A-4b)
and
. kiR
r=—f x (Ac)

The secondary electric elements are (Wannamaker
et al., 1984; Wannamaker, 1991)

G, 4;_ {arl "",y" J ;:;-}, (sb)
SGE = ﬁ{g" Al (A5c)
= L [k (A-5d)
5GE,= 471&/_ {5’}[ O Jsp sy, aso)
0=y P (A-SD
O ) s
e R i) (Ash)
and
SG;:%]M{%}. (A-51)

with Hankel transforms
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B K o 18] vued 144
s = J' ('{[uijITMjL—u.;- A.ITE]e 4z = dj-1) SGC'XJ_TH{ Py [S)/:j]}, (A9¢)
—[ue e 4 v+4™) R™M n_ 1L {I[@p=y) _
I:2( ! / } SGX,Vj_ 4”{dyl r s ¥} SY’Z[}’ (A'9d)
— K e 0 png) R g ,
j _ 1§ 3T (x—x)
; SG’&-;{ ‘;y/[ ). Jspu), (A9¢)
Ji(Ar)dA, (A-6a)
e S
s :J‘_l [foE]eﬂzj(z 41 SG‘ZW‘_T” {E [S%:j]}’ (A-9f)
Y 0 U J
e s ATy R e 99 VAl = (-, (A9g)
(A6b)
1 [ee—x
R 5 yz,:Tﬂ{[( r) ]SVZ,-]}, (A-9h)
A 4":."0[141 Je i 4
+[(€ uj(z - dj |D+xA}7W) fRIT.M:]e Uiz dj ”}U()(Af)d/l, and
(A-6c) SGh,=0, (A9))
s q,:J'liz [2A™]e*ue 4 v with transforms
i . J 5
0 U Sr’;lj:j {[;AIM_XAJT_'E]e*uj(zfdj,l)
<o w4 AP Re o 4 A, T sA™) R
e -4 :
(A'6d) +(efuj(z"—dj—1)+xAJT_i')—RJTEl]e'uj(z*dj ”}J,(Ar)dﬂ,
and (A-10a)
’ 6’:J’n /{2{[{,4;'”]9*“/’(2"41'-1’ s 3j:JI{EXAIE]e+“f‘Z"y"')
— wiz dj 1)z TM 1"M ujz-di- 1)
[(e 7 7 +A! )R; ]e iz —dj }Jl(A?Z_te) _[(e uj(z dj |)+xA;E)—R;E]efuj(zf,1j<,])}/Uo(jf)d&

(A-10b)
Similarly, the primary magnetic members become .
O e

Gl =G, ="G".=0, (A-Ta)

_ -1, +[(e w4 V4+24T) RIFle™ 44V AJy(Ar)d),
"Gly= G = o @)Y (A-Tb) o (A-100)
PrH _ _ prH o 1 N/ and
sz_[i - zejfT” (}’_y) y}ijs (A'7C)

: < )2 T™MA +uitz—d;
S — 1 2 124! ujz—dj—1)
and % jn u; (4 Je e

B -1 , +[e 4= % V+A™) R™e 4=4-D}],(Ar)d.

"Gl= =G = 4 kXY, (ATd) o (A-10d)
where Since just complementary potential solutions exist
KR " in layers other than that containing the source, only
PYl= ¢ raa +LRJ-] (A-8) secondary Green’s function elements are defined.
The forms of the secondary elements are identical
The secondary elements are to equations (A-6) and (A-10), with / substituted for
1 (g L J everywhere, and will not be rewritten. The pertinent
SG'L-:—{_! [JL-L)]SJ/{}, (A-9a) Hankel transforms for the elecric elements, for I>j,
Y 4n 'k r / are
-1 —x' S .
] e A ™ I ol W O C U A
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K " .
+ _ul_ +BZT (xAJZ'Ee+thJ/+R;'E) +RTE]e+w(z dp
J

_ I:ul +BW (XAW +u,h,/+R7M)

2
_ _ZL +BITJE' (xAIT_Ee+ujhj/+R}E)+RF]e+Mlll“dl)}
J(ndi, (A-11a)
Vo= f {[*BTE cA™e* /" R™))
[+RTE Fupz— dl>+e‘"1‘z’d’)]}/l]0(/1r)dﬁ, (A-11b)
f (BT cA™ e i/ RT™)]
[ Rm e —d 4 ~ue=db ]} A (Ar)dA, (A-11¢)
=2 —{[*B €A™ e" 5/ RI™)]
It RIM +ujz— d/)+e*ul(z—d1)]},1]0(,1r)dj, (A-11d)
and
St R B A R
J
.[+R7we+u,<r.zn_e—uuzvdn]}Jl(,q,)d,L (A-11e)

The magnetic transforms are
},H f {[+B (xATM +ujhl/+R7M) RTM

_?5;1{13 (xATE +u,h,/+RTE) +RTE]e+u1(z dp
1

|:+B (xATM +ujhj/+RTM)

+ z!ul +BTE(XATE *"J"I/J’RTE)](“’(’ dl)}

Z]ll
J(rdA, (A-12a)
= [ 2B care k)
J
‘[*RF et d—e ue=dijJ(Ar)dj,  (A-12b)
J _J_{[+B (xATE +ujhj/+RTE)]
[*RTE tued) o MATAdA,  (A-12c)
and
S}.H J’ _”:+B (zAW +thJ/+RTM):]
[*RW Fule=d) 4 g we =) (Ar)dA. (A-12d)

Finally, in layer /<j, the electric Hankel transforms
are

h= f *(Cw BT A

K

+—L B (e e 4044y et uredin
u;
J

—(w B} (e = 9 V+47) R™)

KB om ved
_—uj- Bﬁ(e uj(z "/—l)+xAJ(E) RTE)]G uz d,.,,}
Jiénda (A-13a)
s}f;:f:% {[*Bff (e*uj(l'*djfl).l_xAJT_E)
e emdo Rl 4 V] A G
(A-13b)

=[BT e 40 eeATY]
[etue—d-n4 *R?Me""(rd’f D ATo(Ar)dA
(A-13c)

A= ;7 (B 54 14+:41)]

[e4 ul(z dlfl)+ *RIMe*ul(zﬂi] ”]}U()(/{r)di
(A-13d)
and
o= [T R B e a0+ )
J

et uedi-v_ ‘RfMe u/(z--dl-l)]}Jl(,{r)d}_,
(A-13e)

with the magnetic integrals
= [T B s v

——%’u—"B,Tf(e 4@ I)+XAI7_-E):|e‘MI(Z d
Zily
+0B (e 4 v+241) "RV

Zi
+—’u—"BTE(e ujie = dj- n_|_xATE) RTEJewte=di- 1}
L]

Ji(AndA, (A-14a)

=[BT a0 4oAT)
Zu;j
<[etuEd-D— RTE —ute=di= ]| AT (AP A
(A-14b)
sﬂ'_f 0 2w L B e 4 V4]

[e+ul(z - 4. R,TEG w(r-dl—l)]}/uﬂ(/{r)d/l
(A-14¢)

and

s?’?;%fo— {[ BTVI(e—uj(z ~d; 1)+ZATM)]

[e+u[(z d-n4 RMg ute a0y (AR
(A-14d)
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