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Variable Bandwidth Selection

for Kernel Regression:

Daehak Kim ?

ABSTRACT

In recent years, nonparametric kernel estimation of regresion function
are abundant and widely applicable to many areas of statistics. Most of
modern researches concerned with the fixed global bandwidth selection
which can be used in the estimation of regression function with all the
same value for all z. In this paper, we propose a method for selecting
locally varing bandwidth based on bootstrap method in kernel estimation
of fixed design regression. Performance of proposed bandwidth selection
method for finite sample case is conducted via Monte Carlo simulation
study.

1. INTRODUCTION

Let Y3,Y2,---, Y, be observations on the unknown regression function 6(-)
with a model
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Yi=0(z:)+e, 1=1,---,n (1)

where ¢; are iid from unknown F with mean 0 and finite variance ¢® and z;
are fixed design points. Without loss of generality, we assume the regression
function 0 is defined on the closed interval [0,1] and z; are equally spaced.

We consider Nadaraya (1964) and Watson (1964) type kernel estimate of
regression function of the form

- (z — ;) /h
O.(z:h) = ZE, A x_)g/cj))/h)y (2)

where K(-) is kernel and global bandwidth h represents over all amount of
smoothing which depends on n and tends to 0 as n — oo but nk — oo.

It is well known that bandwidth selection is a crucial problem. The main
reason is that a small bandwidth yields large variance while large bandwidth
yields large bias of the kernel estimate. Various proposals for appropriate
selection of global bandwidth have been made. Wong (1983) had shown the
strong consistency of cross validated bandwidth for (2). Bootstrap method for
the selection of global bandwidth for kernel regression was also developed by
Kim(1993).

However the kernel estimate of the form (2) exhibit an increased bias near
peaks of 0. Since the bias near peaks may contribute especially a large portion
to mean squared error of the estimate (M SE), MSE might be reduced by
decreasing the bandwidth near peaks and increasing the bandwidth in flat
parts of the curve. When estimating the regression function at a particular
point, it would be helpful to use variable bandwidth (local bandwidth) for
the nature of the data. For example, near a peak a relatively small value
of smoothing parameter is appropriate, wheras on an approximately linear
section, a large value of smoothing should be used.

So, we consider the choice of locally varying bandwidths. The correspond-
ing kernel estimate is

(z — zi)/hs)
Y; (3)
; Z] =1 K((:z: — z;)/hz)
where h; is local bandwidth satisfing nh, — oo but h; — 0 as n — co.

In this paper, we propose a data dependent local bandwidth selection
method based on bootstrap method for the kernel estimate of the form (3).
For bootstrap method, we estimate the quantity,

E[0.(z : he) — 0(z)]? (4)
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for Vz using bootstrap method via Monte Carlo simulation and find data de-
pendent bandwidth k. which minimise the bootstrap estimate of (4). To study
the performance of proposed local bandwidth selections, Monte Carlo simula-
tion is conducted.

2. LOCAL BANDWIDTH SELECTION

2.1 Preliminaries

In this section, we propose a local bandwidth selection methods based on
bootstrap method. We assume the following resonalbly mild conditions.
Assumptions
1. h, = 0 and nh, — oo as n = o©
2. The kernel K is symmetric with finite support [—A, Al
3. 6(x) is continuous and 8" (z) exists

Under the assumption 1.,2., and 3. we have the limiting bias and variance

Erd,(z : hy) = 0(z) + %I(Z(x)o"(x) + o(h2) (5)

Vargl,(z : h;) = ) (6)
where K, = [ z?K(z)dxz. These asymptotic expression indicate that appropri-
ate choice of local bandwidth %, should be influenced by 8" (z). When [0"(z)|
is large, since the bias is greatly affected by 6"(z), small values of h, are re-
quired to keep the bias low, whereas when [|0"(z)| is small, large values of
h, are appropriate to deflate variance. Variable bandwidth selection method
aims to balance these effects in a way that is appropriate for each particular
location.

By simple calculation, we can get locally asymptotic optimal bandwidth by

z nhy

;L az/Kz(x)dz—}—o( !

h;mm - 7’1,—1/50’2/5[/I(z(l')dilf]l/s[e”(:E)]—Z/SI(;Z/S

= en”lf8
in MSE sense. Of course, we don’t know o and 8", but rate of k.

Since the variance of 5,,(3: : hz) converges to 0 at the rate o(1/nh.), we
consider the normalized process
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Zn(z : cn”V5) = n¥3(B,(z : ecn~M®) — O(z)). (7)

For the asymptotic distribution of Z,(z : cn™'/%), see Kim(1993). It is impor-
tant to know that if Ay is chosen to balance the bias and standard deviation
of 0,(z,h;), then the variance and squared bias will have the same rate of
convergence. Therefore it is necessary to ensure that this behavior is mirrored
in the distribution of bootstrap estimator.

2.2 Bootstrapping kernel regression

The bootstrap method in kernel regression function estimation is to esti-
mate MSE from the given sample and then find the bandwidth minimising
the bootstrap estimate of M SE. But it requires the initial regression function
estimate 5n(:v : ho) of 6(z) for the residual estimation. So we take cross-
validatory bandwidth ho as an objective initial estimate of global bandwidth
h. Hardle and Bowman(1988) considered bootstrapping kernel regression for
Priestly and Chao(1972) estimator

Ou(z : hy) =n"1h7 Z K((z — z:)/h)yi
=1
They used kernel estimate of " (z) in the estimation of bias and considered
bias corrected bootstrapping. Moreover they discarded estimated large residu-
als in resampling. We, in this paper, consider bootstrapping kernel regression
for the original process. It can be another method.

Let 5n(x) be some initial regression function estimate of §(z) with a given

data set Y1,Y,,---,Y,. From this initial estimate of regression function, we
can get an estimated residuals € by € = Y; — 0,(x ,-), 1=1,2,---,n and let &

be centered residual of €;. That is, § =¢; — 711 Yo €, = 1 2

Now let F, be empirical distribution function of centered re81duals €; and let
€,€, -, € beiid. sample from the F i.e. by resampling with replacement

from the empmcal distribution F, of €. From these conditionally independent
_random variable €, we can get a new data set Y;* by

Y =0.(z:)+€ :=1,2,---,n
With those Y;* , we construct the bootstrapped regression function estimate

- K((w—w)/h ) v

il he) = (@ —a)/h)

=1 ‘_1
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The following theorem is helpful in understanding bootstrapping.
Theorem For fixed ¢ > 0 and with the assumptions 1.,2. and 3.,

Zn(z: cn_l/s) = nz/s(a\:(x : cn“l/s) — gn(x))

has the same asymptotic distribution of Z,(z : cn™1/%).

Proof. See Kim(1993)

Remark 1. The limiting bias and variance of bootstrapped regression
function estimate 5’,‘;($ : hy) are the same with those of asymtotics (5),(6). It
means that the behaviour of bootstrap distribution is similar to that of true
asymptotic distribution. So, we can expect that large values of h is obtained
in flat part whereas small values of h, are obtained in peak part of the function.

Corollary Let ¢ and ¢® be the optimal choices minimising the limits

lim EZ,(z:en”'%) and lim E*Z:(z : en™'/%)
respectively where E* denotes conditional expectation under ﬁn, then by
the theorem
lim n?PE[f,(z : n"Y/%) — 6(z)]* = lim nz/sE’[é;(x : nm5) — 6(2))?
n-—+00 n—00
Remark 2. By the Corollary, we can get a data dependent bandwidth not
a asymptotic one which has asymptotic optimal properties.

2.3 Local bandwidth choice

Based on the consistency of bootstrap method, we can get the bootstrap
estimates of MSE = E(0,(z : hy) — 0(z))%. Let €},€,- -+, €, be i.i.d. samples
from the fn where fn is empirical distribution function of estimated and cen-
tered residuals from the initial regression estimates. With these residuals, we
obtain the resampled Y;* and construct the bootstrapped regression function

1
estimate

~ S~ K((z—=)/he)
ste he) = ) S )

Y for ;=12,---,B.

Then, bootstrap estmates of MSE would be

BMSE
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where hg is the initial global bandwidth chosen by cross-validation method.
So we can get the local bandwidth h, for Vz by minimising BMSE.

3. SIMULATION STUDY

In this chapter, performance of proposed local bandwidth selection methods
for fixed sample size is conducted thru Monte Carlo simulation. For simula-
tions, the regression function estimate 0,(z : h;) of the form (3) is considered.

Our test regression function considered were the following two different
types of functions.

01(z) = sin(4rz) (large 0" (z), periodic)
05(x) = R(0.25,0.05) + A(0.5,0.1) (bimodal function)

where h(g,0) = exp(—(z — p)?/20?)/ov/2x. For reasons of computational
efficiency, we used the Epanechnikov kernel (1969)

3
K(z) = { 2(1—-12?% for |x|§ 1
0 otherwise

These curves were computed on [0,1] with sample size n=100. Errors were
generated from the standard normal distribution and transformed to have stan-
dard deviation 0.1 and 0.8 respectively. Due to the computational limit, we
only considered standard normal distribution as an error distribution. All com-
putation was carried out by Workstation(Sun-10) and random numbers were
generated thru subroutine RNNOR and RNUND in IMSL.

B = 100 bootstrap sample were used. Any increase in the number of
bootstrap samples could only improve the estimates. We had 100 replications
for each test function.

Figure 1. Estimated curve for 6 (z)
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Figure 2. Bandwidth plot for 6;(z)
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Figure 3. Bandwidth plot for 6;(z)
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In figure 1, we represent the data, true function and estimated function
based on local and global bandwidth respectively. As we can see, estimated
curve with local bandwidth are closer to the true curve than the curve with
the global bandwidth for all z. Figure 2 represents estimated bandwidth for
the function 6;(z). Asymptotic optimal bandwidths

17



18 "Daehak Kim

Figure 4. Local bias for §;(z)
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are evaluated with known 6 and 0. Where, best means the estimated local
bandwidth which we presume the knowledge of true function. So it is the
best bandwidth which can be achived from the sample. There seems to be
a general tendency for the local bandwidth based on bootstrap method. We
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note that in the peak part of the curve estimated bandwidths are small and in
flat part large values of bandwidth is obtained. Bootstrap based bandwidths
are closer to the best bandwidths than asymptotic ones. We have presented
a asymptotic optimal, estimated local bandwidth in figure 3. In this plot, the
same tendency for the local bandwidth are appeared.

Figure 6. Estimated curve for 0,(z)
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Figure 4 and 5 represents the estimated local bias and local variance for
62(z). From this plot, we can check that biases in peak part of the curve
are greatly reduced whereas variances are deflated. Figure 6 represents true
function and estimated curve for 6,(z).

4. DISCUSSION AND CONCLUSION

From the plots of estimated local bandwidth in Figure 1 thru Figure 5, we
can see that the local bandwidths varies considerably. Also we can see that
bootstrap based local bandwidths which minimise bootstrap estiamte of MSFE
are a little large than locally asymptotic optimal bandwidths.

The bootstrap method for the choice local of bandwidth generally provides
an improvement in performance where cross-validatory bandwidth is used as

19
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an objective initial bandwidth. For all the two functions considered and for this
sample size, the bootstrap based local bandwidth choice yields closer estimate
to the true curve than cross-validated global bandwidth.

We proposed a local bandwidth selection method for selecting the data
driven bandwidth for the fixed design kernel regression function estimation.
It would seem that the major benefit of local bandwidth selection method is
to provide accurate estimate for the peak part of unknown regression func-
tion. Where computational consideration permit, bootstrap compares favor-
ably with cross-validation for these small sample size.
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