Studies on *Pasteurella multocida* isolated from pneumonic lungs of slaughter pigs

Byung-chul Ahn, Kwang-hyun Cho*, Bong-hwan Kim

College of Veterinary Medicine, Kyungpook National University, Kyungpook Animal Health Experimental Institute* (Received May 10, 1994)

도축돈의 페덤병소에서 분리한 Pasteurella multocida에 대한 연구

안병철·조광현*·김봉환 경북대학교 수의과대학, 경퇖가축위생시험소* (1994년 5월 10일 접수)

초록 : 이 실험은 도축돈의 폐에서 Pasteurella multocida 감염의 발생빈도를 조사하고 분리된 Pasteurella multocida 의 항생제에 대한 약제감수성, 생화학적특성, 협막혈청형의 분류 및 독소생성능에 대해서 조사하였다. 실험재료로는 영남지방의 돼지 450두가 사용되었으며, 재료채취는 1992년 4월부터 1993년 3월 사이에 시행되었다.

P multocida는 도축돈의 폐 450예에서 80주가 분리되어 17.7%의 분리율을 나타내었다. 분리균 대부분의 생화학적 및 배양성상은 reference strain의 것과 일치하였으며, 분리균 80주의 협막혈청형을 동정한 결과 77주가 type A, 나머지 3주가 type D로 나타나 각각 96.3%, 3.8%의 분포비를 나타내었다. 항생제에 대한 감수성검사에서 모든 분리균주는 ampicillin, ceftiofur, cephalothin, ciprofloxacin, penicillin-G 등에 대해서는 매우 감수성이 높았으며 이들 분리균중 일부는 sulfadimethoxine과 streptomycin에 내성을 나타내었다. 분리균 80주중 61주가 독소생성능이 있는 것으로 나타났으며, type A 77, type D 3주중 76.6%가 각각 독소생성능이 있는 것으로 나타나 협막혈청형간에 독소생성능의 뚜렷한 차이가 인정되지 않았다.

Key words: Pasteurella multocida, capsular serotypes, toxigenicity

Introduction

Pasteurella multocida is the causative agent of pasteurellosis in variety of animal hosts, and can develop pneumonia and atrophic rhinitis in pigs. Consisting of complicated antigenic structure, *P multocida* has 5 capsular serotypes(A, B, D, E and F) and 16 somatic serotypes¹⁸. The capsule which *P multocida* produces is a very important virulence factor, especial-

ly of serotype A, for it helps the organism avoid phagocytosis by alveolar macrophage^{17,18}. So serotype A plays an important role in bringing about pneumonia more than serotype D does. Dermonecrotic toxin(DNT), one of the major virulence factors of P multocida, is central to the production of atrophic rhinitis, where only toxigenic strains of P multocida are involved in the disease^{18,21,22}. Although single infection of P multocida can cause pneumonia, P multocida

is not a primary agent of pneumonia. But respiratory disease complicated by P multocida is present to a varying degree in most growing finishing pigs and the most common bacterial disease of pigs in the world 18,19. The available evidences suggest that P multocida has been most frequently isolated from swine lungs and causes a lot of economic losses in swine industry 23,26. Toxigenic strains of P multocida from swine lungs have been reported by a number of authors^{5,8,10,17,23,24}, and the importance of dermonecrotic toxin(DNT) produced by P multocida has been gradually increasing. But there have not been enough reports about not only toxigenicity of P multocida but also the incidence of P multocida infection in Korea^{3,11,16}. So the objective of this work was to investigate the incidence of P multocida infection in the lung of slaughter pigs, and to examine the biochemical and cultural characteristics, antimicrobial susceptibility, capsular serotypes and toxigenicity of the isolates.

Materials and Methods

Collection of lung samples: 450 lung samples of slaughter pigs with gross lung lesions were collected from Taegu slaughter plant during the period from April 1992 to March 1993.

Macroscopic examination: All lungs were evaluated by the same person, and the gross lesions were qualitatively grouped with the special regard to uncomplicated mycoplasma pneumonia, complicated pneumonia and complicated pneumonia with pleuritis²⁰.

Isolation of P multocida: Isolation of P multocida was performed by inoculating the lung suspensions on sheep blood agar. The plates were incubated at 37° C and examined after 18-24 hrs.

Biochemical and cultural characteristics: All biochemical and cultural procedures were carried out according to Cowan and MacFaddin's methods^{4,12}.

Antimicrobial susceptibility test: The test was performed by agar plate dilution method. Antibiotics used were of Sigma product except ceptiofur(Upjohn).

Capsular serotyping of *P multocida* isolates: *P multocida* isolates ware identified as capsular serotype A and D by methods described by Carter and Rundell¹, and Carter and Subronto.²

Detection of dermonecrotic toxin(DNT): The isolates were tested for toxin production by modified De Jong and Sawata's method^{5,25}. *P multocida* isolate incubated in tryptic-soy broth at 37°C for 18 hrs was sonicated twice for 20 min and centrifuged at 3000rpm for 60 min at 4°C (sonicator: Samboultrasonic Co Model:SB 150). The supernant fluid was passed through a 0.2µm membrane filter and designated as a test sample. 0.5ml of bacterium-free broth-filtrate were intraperitoneally injected into mouse(ICR from life science) weighing 15-20g. Toxigenic *P multocida* killed a mouse in 1-10 days.

Results

Isolation frequency of *P multocida* from pneumonic lungs of slaughter pigs is shown in Table 1. *P multocida* was isolated from 80(17.7%) of 450 pneumonic lungs of slaughter pigs. Isolation rate of *P multocida* from complicated pneumonia with pleuritis was higher than those of remaining two lesions. Among 80 isolates seventy seven strains(96.3%) were capsular serotype A and the remaining 3(3.9%) were capsular serotype D(Table 2). Capsular serotype D was isolated from complicated pneumonia with pleuritis, but not

Table 1. The isolation frequency of Pasteurella multocida from pneumonic lungs of slaughter pigs

Types of lung lesions	No of lungs examined	No of <i>P multocida</i> isolated	Percent of P multocida isolated
Uncomplicated mycoplasma pneumonia	32	2	6.3
Complicated pneumonia	343	57	16.6
Complicated pneumonia with pleuritis	75	21	28.0
Total	450	80	17.7

Table 2. Capsular serotypes of 80 isolates of Pasteurella multocida from pneumonic lungs of slaugter pigs

Sources of isolates	No of isolares	Capsular serotypes		
Sources of isolates	NO OF Isolates	Type A	Type D	
Uncomplicated mycoplasma pneumonia	2	2(100)*	0(0)	
Complicated pneumonia	57	57(100)	0(0)	
Complicated pneumonia with pleuritis	21	18(85.7)	3(14.3)	
Total	80	77(96.3)	3(3.7)	

^{*} Figures in parentheses are percentages.

Table 3. Biochemical and cultural properties of 80 isolates of Pasteurella multocida from pneumonic lungs of slaughter pigs

Properties	No of positive isolates	Percent of positive isolates		
Catalase	80	100.0		
Growth on MacConkey agar	0	0.0		
Hydrogen sulfide production(lead acetate paper)	75	93.8		
Indole production	73	91.3		
Motility	0	0.0		
Urease production	0	0.0		
Nitrate reduction	80	100.0		
Hemolysis	0	0.0		
Methyl-Red reaction	0	0.0		
Voges-Proskauer reaction	0	0.0		
Gelatin liquefaction	0	0.0		
Oxidase	80	100.0		

Table 4. Carbohydrate fermentative properties of 80 isolates of *Pasteurella multocida* from pneumonic lungs of slaughter pigs

Fermentable substrates	No of positive isolates	Percent of positive isolates		
Arabinose	27	33.8		
Dulcitol	34	42.5		
Galactose	80	100.0		
Glucose	80	100.0		
Inositol	30	37.5		
Inulin	30	37.5		
Lactose	42	52.5		
Maltose	33	41.3		
Mannitol	69	82.3		
Raffinose	23	28.8		
Salicin	32	40.0		
Sorbitol	75	93.8		
Sucrose	80	100.0		
Trehalose	62	77.5		
Xylose	75	93.8		

Table 5. Antimicrobial susceptibility of 80 isolates of Pasteurella multocida from pneumonic lungs of slaughter pigs

Antimicro-				No of	cultures	with M	AIC(μg/	ml or I	U/ml)			
bials	0.1	0.2	0.39	0.78	1.56	3.13	6.25	12.5	25	50	100	100<
AK						1	15	53	11			
AM	67	12	1									
CE	13	42	17	5		2	1					
CF	59	14		2		4	1					
CIP	80											
CP	2	1	12	65								
EM	1	1	5	31	28	13	1					
KM					1	17	53	9				
LM							1	52	9	17	1	
OT			3	3	3	18	3	26	22	2		
PG	13	36	24		1		1	5				
SDM							3	15	39		10	13
SM					2	4	21	31	3		10	9

AK: amikacine, AM: ampicillin, CF: ceftiofur, CE: cephalothin, CIP: ciprofloxacin, CP: chloramphenicol, EM: erythromycin, KM: kanamycin, LM: lincomycin, OT: oxytetracyclin, PG: penicillin-G, SDM: sulfadimethoxine, SM: streptomycin

Table 6. Toxigenicity of 80 isolates of Pasteurella multocida from pneumonic lungs of slaughter pigs

Capsular type	No of isolates	No of DNT+ve	% of DNT+ve 77 67	
A	77	59		
D	3	2		
Total	80	61	76	

from other two lesions. The biochemical and cultural characteristics of *P multocida* isolates are shown in Table 3. All isolates were catalase positive, nonmotile, urease negative, nitrate negative, nonhemolysis, MR-VP negative and oxidase positive, and did not grow well on MacConkey agar. Table 4 presents carbohydrate fermentative properties of 80 *P multocida* isolates. All isolates were positive to galactose, glucose and sucrose.

Antimicrobial susceptibility of *P multocida* isolates is shown in Table 5, and most of isolates were susceptible to antibiotics used. Sixty one(76.3%) of all 80 *P multocida* isolates were dermonecrotic toxin producers (Table 6). Out of type A and type D isolates, 59(76.6%) and 2(66%) were toxigenic, respectively.

Discussion

P multocida is very important to pneumonia and atrophic rhinitis in pigs. According to latest reports, not only serotype D but also serotype A can develop atrophic rhinitis in pigs²⁴ and artificial single infection of *P multocida* into pigs can give rise to atrophic rhinitis and pneumonia⁶⁷.

In this study, isolation rate of P multocida from pneumonic lungs was relatively lower than those reported by other authors^{3,8,9,15,17}. The isolation rate of P multocida from pigs they reported, according to circumstance, was very various although P multocida was isolated from the same pneumonic lungs. The diversity of isolation rate of P multocida may be in difference of isolation methods¹⁷ and effect of antibiotics remaining in slaughter pigs. The majority of lung isolates of

P multocida were type A, and type D strains encounted on rare occasion. This result was very similar to those of other reports^{3,8,9,14,17}. That type A is frenquently isolated from lungs is because the capsule, an important virulence factor, prevents alveolar macrophages from phagocyting organisms^{13,17}.

The majority of biochemical and cultural characteristics were identical to those of the reference strains employed. All isolates were very susceptible to ampicillin, ceftiofur, cephalothin, ciprofloxacin and penicillin-G, although some of them were resistant to sulfadimethoxine and/or streptomycin. In this work, 61 of 80 isolates were toxin producers, and out of 77 type A and 3 type D isolates, 59(76.6%) and 2(66.3%) were toxigenic. As these results, toxigenicity was comparatively higher than those of other reports 10,17, and the percent of toxigenic serotype A strains were higher than those of Pijoan et al.17 and Iwamatsu and Sawada¹⁰. But toxigenicity of serotype D isolates was relatively lower than those of Pijoan et al¹⁷, Iwamatsu and Sawada. 10 and H die9. A number of authors have studied about toxigenic strains(both type A and type D) and the importance of toxigenic strains in pneumonic lungs has been increasing. In general, toxigenicity of type D is relatively higher than that of type A. However this result shows that the difference between capsular serotype A and D was not noted in dermonecrotic toxigenicity of the isolates. The difference of toxigenicity, among P multocida isolates from swine lungs, may be in detection methods of dermonecrotic toxin(DNT)13,22 and severe degree of lung lesions.8

Summary

P multocida was isolated from 80(17.7%) of 450 pneumonic lungs of slaughter pigs. The majority of the biochemical and cultural characteristics of P multocida isolates were identical to those of the reference strains employed. Seventy seven strains(96.3%) among 80 isolates were capsular serotype A while the remaining 3(3.8%) were serotype D. All isolates were very susceptible to ampicillin, ceftiofur, cephalothin, ciprofloxacin and penicillin-G although some of them were resistant to sulfamethoxin and/or streptomycin.

Sixty one(76.3%) of all 80 *P multocida* isolates were dermonecrotic toxin producers. Out of 77 isolates of serotype A and 3 isolates of serotype D, 59(76.6%) and 2(66.7%) were toxigenic, respectively. No difference was noted in dermonecrotic toxigenicity of the isolates in relation to capsular serotypes.

References

- Carter GR, Rundell SW. Identification of type A strains of *Pasteurella multocida* using staphylococcal hyaluronidase. *Vet Rec* 1975; 96: 343.
- Carter GR, Subronto P. Identification of type D strains of Pasteurella multocida with acriflavine. Am I Vet Res 1973; 34: 293-294.
- Cho GJ. Incidence and biochemical properities of Pasteurella multocida in Youngnam swine herds. Thesis, Kyungpook National University 1988.
- Cowan ST. Manual for the Identification of Medical Bacteria, 2th ed. Cambridge University Press 1974; 89-90.
- De Jong MF, Oei JS, Testenburg GJ. AR-Pathogenicity-test for *Pasteurella multocida* isolates. Proceedings on 10th International Pig Veterinary Society (IPVS) Congress 1980; 221.
- Dominick MA, Rimler RB. Turbinate atrophy in gnotobiotic pigs intranasally inoculated with protein toxin isolated from type D Pasteurella multocida. Am 1 Vet Res 1986; 47: 1532-1536.
- Elling F, Pedersen KB. The pathogenesis of persistent turbinate atrophy induced by toxigenic Pasteurella multocida in pigs. Vet Pathol 1985; 22: 469-474.
- Falk K, H o ie S, Lium BM. An abattoir survey of pneumonia and pleuritis in slaughter weighter swine from 9 selected herds. II. Enzootic pneumonia of pigs: Microbiological findings and their relationship to pathomorphology. Act Vet Scand 1991; 32: 67-77.
- H φ ic S, Falk K, Bjorn ML. An abattor survey of pneumonia and pleuritis in slaughter weight swine from 9 selected Herds: IV. Bacteriological findings in chronic pneumonia lesions. Act Vet Scand 1991; 32: 395-402.

- 10. Iwamatsu S, Sawada T. Relationship between srotypes, dermonecrotic toxin production of *Pasteurel-la multocida* isolates and pneumonic lesions of porcine lung. *Jpn J Vet Sci* 1988; 50(6): 1200-1206.
- 11. Kim JY, Park JM, Kim ON. Studies on the immunogenicity of *Pasteurella multocida* isolated from swine in Korea. *Res Reports of the Rural Development Administration(Korea)* 1986; 28: 77-93.
- MacFaddin JF. Biochemical Tests for Identification of Medical Bacteria. Baltimore London:Williams Wilkins 1980.
- Maheshwaran SK, Thies ES. Influence of encapsulation of phagocytosis of *Pasteurella multocida* by bovine neutrophils, *Infect Immun* 1979; 26: 76-81.
- Morrison RB, Pijoan C, Hilley HD, et al. Microorganisms associated with pneumonia in slaughter weight swine. Can I Comp Med 1985; 49: 129-137.
- 15. Osborns AD, Sauders JR, Sebunya TK. An abattoir survey of the incidence of pneumonia in Saakatchewan swine and an investigation of the microbiology of affected lung. Can Vet J 1981; 22: 82-85.
- Park JM, Kim JY, Byeon JO, et al. Isolation and scrotyping of Pasteurella multocida from pigs with respiratory disease. Res Reports of the Office of Rural Development(Korea) 1983; 25: 97-104.
- Pijoan C, Lastra A, Ramires C, et al. Isolation of toxigenic strains of *Pasteurella multocida* from lungs of pneumonic swine. *J Am Vet Med Assoc* 1984; 185: 552-553.

- Pijoan C. Pneumonic pasteurellosis. Diseases of Swine, 7th ed. Iowa State University Press 1992; 552-559
- Pijon C, Ochoa G. Interaction between a hog cholera vaccine strain and *Pasteurella multocida* in production of porcine pneumonia. *J Comp Pathol* 1978; 88: 167-170.
- Pointon AM, Mercy AR, Backstrom L, et al. Swine surveillance at slaughter. *Diseases of Swine*, 7th ed. Iowa State University Press 1992; 968-987.
- Rutter JM. Virulence of Pasteurella multocida in atrophic rthinitis of gnotobiotic pigs infected with Bordetella brondchiseptica. Res Vet Sci 1983; 34: 287-295.
- Rutter JM, Lutter PD. Cell culture assay for toxigenic *Pasteurella multocida* from atrophic rhinitis of pig. *Vet Rec* 1984; 114: 393-396.
- 23. Rutter JM. Atrophic rhinitis in pigs. Pig news and Information 1987; 8: 285-387.
- Sakano T, Taneda A, Okada M, et al. Toxigenic type A Pasteurella multocida as a causatic agent of nasal turbinate atrophy in swine. J Vet Med Sci 1992; 54: 403-407.
- Sawata A, Nakai T, Tsuji M, et al. Dermonecrotic activity of *Pasteurella multocida* strains isolated from pigs in Japanese field. *Jpn J Vet Sci* 1984; 46(2): 141-148.
- Yong GA, Caldwell JD, Underdahl NR. Relationship of atrophic rhinitis and virus pig pneumonia to growth rate in swine. J Am Vet Med Assoc 1959; 134: 231-233.