SCALING *d*-MEASURES

Hung Hwan Lee and In Soo Baek

1. Introduction

In [2], the Hausdorff measures which obey a simple scaling law were investigated. Recently, *d*-measure was introduced to overcome difficulties in the theoretical development of a dimensional index induced by lower capacity [1]. In this note, we are interested in the characterization of continuous increasing functions θ by which *d*-measures d^{θ} obeys a scaling law. We obtain the exactly same results for d^{θ} as those in [2]. Thus we could get the inter-relations of Hausdorff measure, *D*-pre-measures and *d*-measures satisfying a simple scaling law.

2. Preliminaries

Let θ be a continuous increasing function defined on \mathbf{R}^+ with $\theta(0) = 0$. We define a pre-measure D^{θ} of $F \subset \mathbf{R}^m$ by $D^{\theta}(F) = \underline{\lim}_{r \to 0} N(F, r)\theta(r)$, where N(F, r) is the minimum number of closed balls in \mathbf{R}^m with diameter r, needed to cover F. Then $D^{\theta}(\phi) = 0$, $D^{\theta}(F) = D^{\theta}(\overline{F})$, and D^{θ} is monotone. We employ Method I by Munroe [3] to obtain an outer measure d^{θ} of $E \subset \mathbf{R}^m$; $d^{\theta}(E) = \inf\{\sum_{n=1}^{\infty} D^{\theta}(E_n) : \bigcup_{n=1}^{\infty} E_n = E\}$. In particular, when $\theta(t) = t^{\alpha}$, d^{θ} is the α -dimensional d-measure [1]. It is not difficult to show that d^{θ} is a Borel regular and metric outer measure (cf. [1]). Clearly, d^{θ} is a regular outer measure (cf. [1]). Also, using the subadditivity of Hausdorff outer measure \mathcal{H}^{θ} and the definition of d^{θ} , we easily see that $\mathcal{H}^{\theta}(E) \leq d^{\theta}(E)$ for every set $E \subset \mathbf{R}^m$. We say that d^{θ} obeys an order α scaling law provided whenever $K \subset \mathbf{R}^m$ and c > 0, then $d^{\theta}(cK) = c^{\alpha}d^{\theta}(K)$.

Received February 7, 1993.

Supported in part by TGRC-KOSEF and the Basic Science Research Institute Program Ministry of Education.

3. Main results

Throughout this section, we assume that θ is any continuous increasing map of \mathbf{R}^+ into \mathbf{R}^+ with $\theta(0) = 0$ such that θ is strictly concave down on a right neighborhood of 0 : there is some $\delta > 0$ such that if $0 \le x < y < \delta$ and 0 < t < 1,

$$\theta(tx + (1-t)y) > t\theta(x) + (1-t)\theta(y) \qquad [2].$$

R.D. Mauldin and S.C. Williams construct a special Cantor set $\mathbf{C} = \bigcap_n [\bigcup_{\sigma \in \omega^*, |\sigma|=n} J_{\sigma}]$, induced by θ such that $0 < \mathcal{H}^{\theta}(\mathbf{C}) < \infty$. (See [2] for the details.)

Lemma 1. For the special Cantor set C induced by θ in [2],

$$0 < \mathcal{H}^{\theta}(\mathbf{C}) = d^{\theta}(\mathbf{C}) = D^{\theta}(\mathbf{C}) < \infty.$$

Proof. Since $\mathcal{H}^{\theta}(\mathbf{C}) \leq d^{\theta}(\mathbf{C}) \leq D^{\theta}(\mathbf{C})$, we only need to show that $D^{\theta}(\mathbf{C}) \leq \mathcal{H}^{\theta}(\mathbf{C})$. Considering the sequence $\{m_n\}$ and $\{x_n\}$ induced by θ (cf. Lemma 6 in [2]), we have

$$D^{\theta}(\mathbf{C}) \leq \underline{\lim}_{n} N(\mathbf{C}, x_{n}) \theta(x_{n})$$

$$\leq \underline{\lim}_{n} \prod_{i=1}^{n} m_{i} \theta(x_{n}) = \mathcal{H}^{\theta}(\mathbf{C}).$$

Lemma 2([2]). Suppose that for all c > 0

$$\underline{\lim}_{t\to 0}\frac{\theta(ct)}{\theta(t)} = c^{\alpha}.$$

Then, for all c > 0, $\lim_{t\to 0} \frac{\theta(ct)}{\theta(t)} = c^{\alpha}$.

Proposition 3. Suppose that for all c > 0

$$\lim_{t\to 0}\frac{\theta(ct)}{\theta(t)}=c^{\alpha}.$$

If $K \subset \mathbf{R}^m$ and c > 0, then $D^{\theta}(cK) = c^{\alpha} D^{\theta}(K)$.

Proof. Noting N(cK, cr) = N(K, r), we obtain the result using the similar method as the proof of Theorem 4 in [2].

Corollary 4. Suppose that for all c > 0

$$\underline{\lim}_{t\to 0}\frac{\theta(ct)}{\theta(t)} = c^{\alpha}.$$

If $K \subset \mathbf{R}^m$ and c > 0, then $D^{\theta}(cK) = c^{\alpha} D^{\theta}(K)$.

Proof. It follows immediately from Lemma 2 and Proposition 3.

Theorem 5. Suppose that for all c > 0 and $K \subset \mathbb{R}^1$, $d^{\theta}(cK) = c^{\alpha}d^{\theta}(K)$. Then, for all c > 0, $\underline{\lim}_{t\to 0} \frac{\theta(ct)}{\theta(t)} = c^{\alpha}$.

Proof. First, we show that $\underline{\lim}_{t\to 0} \frac{\theta(ct)}{\theta(t)} \leq c^{\alpha}$. From Lemma 1, we assure that there exists $K \subset \mathbf{R}^1$ such that $0 < d^{\theta}(K) < \infty$. Suppose that $\underline{\lim}_{t\to 0} \frac{\theta(ct)}{\theta(t)} \geq Ac^{\alpha}$ for A > B > 1. Then there exists $\varepsilon_0 > 0$ such that $\theta(c\varepsilon) > Bc^{\alpha}\theta(\varepsilon)$ for all $0 < \varepsilon < \varepsilon_0$. Thus,

$$d^{\theta}(cK) = \inf\{\sum_{n=1}^{\infty} D^{\theta}(cE_n) : \bigcup_{n=1}^{\infty} E_n = K\}$$

=
$$\inf\{\sum_{n=1}^{\infty} \underline{\lim}_{\varepsilon \to 0} N(E_n, \varepsilon) \theta(c\varepsilon) : \bigcup_{n=1}^{\infty} E_n = K\}$$

\geq
$$\inf\{\sum_{n=1}^{\infty} \underline{\lim}_{\varepsilon \to 0} N(E_n, \varepsilon) Bc^{\alpha} \theta(\varepsilon) : \bigcup_{n=1}^{\infty} E_n = K\}$$

=
$$Bc^{\alpha} \inf\{\sum_{n=1}^{\infty} D^{\theta}(E_n) : \bigcup_{n=1}^{\infty} E_n = K\}$$

=
$$Bc^{\alpha} d^{\theta}(K).$$

Therefore $c^{\alpha}d^{\theta}(K) = d^{\theta}(cK) \geq Bc^{\alpha}d^{\theta}(K)$. It is a contradiction. It remains to show $\underline{\lim}_{t\to 0} \frac{\theta(ct)}{\theta(t)} \geq c^{\alpha}$. Fix c > 0 and let the sequence $\{z_n\}$ decrease to zero with

$$\lim_{n \to \infty} \frac{\theta(cz_n)}{\theta(z_n)} = \underline{\lim}_{t \to \infty} \frac{\theta(ct)}{\theta(t)}.$$

Here, we consider the special Cantor set C induced by the subsequence $\{x_n\}$ of $\{z_n\}$, which is constructed from θ in [2]. Then, from Lemma 1, we have

$$0 < \mathcal{H}^{\theta}(\mathbf{C}) = d^{\theta}(\mathbf{C}) < \infty.$$

Clearly

$$d^{\theta}(c\mathbf{C}) \leq D^{\theta}(c\mathbf{C})$$

$$\leq \underline{\lim}_{n \to \infty} N(c\mathbf{C}, cx_n) \theta(cx_n)$$

$$= \underline{\lim}_{n \to \infty} \prod_{i=1}^n m_i \theta(cx_n) \quad (cf [2]).$$

Thus,

$$c^{\alpha}d^{\theta}(\mathbf{C}) = d^{\theta}(c\mathbf{C})$$

$$\leq \underline{\lim}_{n \to \infty} \frac{\theta(cx_n)}{\theta(x_n)} [\theta(x_n) \prod_{i=1}^n m_i]$$

$$= \underline{\lim}_{n \to \infty} \frac{\theta(cx_n)}{\theta(x_n)} d^{\theta}(\mathbf{C}).$$

Hence, for each c > 0,

$$c^{\alpha} \leq \underline{\lim}_{n \to \infty} \frac{\theta(cx_n)}{\theta(x_n)} = \underline{\lim}_{t \to 0} \frac{\theta(ct)}{\theta(t)}.$$

Corollary 6. The following five statements are equivalent. (i) If c > 0, then $\lim_{t \to 0} \frac{\theta(ct)}{\theta(t)} = c^{\alpha}$. (ii) If $K \subset \mathbf{R}^m$ and c > 0, then $\mathcal{H}^{\theta}(cK) = c^{\alpha} \mathcal{H}^{\theta}(K)$.

(iii) If $K \subset \mathbf{R}^1$ and c > 0, then

$$\mathcal{H}^{\theta}(cK) = c^{\alpha} \mathcal{H}^{\theta}(K).$$

(iv) If $K \subset \mathbf{R}^1$ and c > 0, then

$$D^{\theta}(cK) = c^{\alpha} D^{\theta}(K).$$

(v) If $K \subset \mathbf{R}^1$ and c > 0, then

$$d^{\theta}(cK) = c^{\alpha} d^{\theta}(K).$$

4

Proof. (i) \Leftrightarrow (ii) \Leftrightarrow (iii) follows from Theorem 5 in [2]. It follows from Proposition 3 and Theorem 5 with Lemma 2 that i) \Rightarrow iv) and v) \Rightarrow i). iv) \Rightarrow v) is trivial by the definition of d^{θ} .

References

- H.H. Lee and I.S. Baek, On d-measure and d-dimension, Real Analysis Exchange Vol.17 (1991-1992), 590-596.
- [2] R.D. Mauldin and S.C. Williams, Scaling Hausdorff measures, Mathematika, 36(1989), 325-333.
- [3] M. Munroe, Measure and Integration (Addison-Wesley, 1971).

DEPARTMENT OF MATHEMATICS, COLLEGE OF NATURAL SCIENCES, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU 702-701, KOREA.