DIVISION SEMINEAR-RINGS

J. Ayaragarnchanakul and S. Mitchell

We show that any finite division seminear-ring is uniquely determined by the Zappa-Szép product of two multiplicative subgroups, and classify all seminear-fields in three out of four categories.

1. Introduction

In [2] the authors investigated semifields in which the addition and multiplication are both commutative. In [3] the first author extended most of the work in [2] to the non-commutative case: this paper outlines the more significant results in [3].

2. Seminear-rings

We say that $(S,+, \cdot)$ is a right seminear-ring if S is a set with two binary operations + and \cdot such that $(S,+)$ and (S, \cdot) are semigroups and the right distributive law holds: $(x+y) z=x z+y z$ for all $x, y, z \in S$. A left seminear-ring is similarly defined, and if S is both a left and a right seminear-ring then it is a semiring. An important example of a right seminear-ring is obtained by starting with an arbitrary semigroup $(S,+)$ and letting $M(S)$ denote the set of all maps from S into itself; if + and . are defined on $M(S)$ as pointwise addition and composition respectively, then $(M(S),+, \cdot)$ is a right seminear-ring which is not left distributive provided $|S|>1$.

In what follows, the word 'seminear-ring' will mean a 'right seminearring'. A division seminear-ring is a seminear-ring $(D,+, \cdot)$ in which (D, \cdot) is a group. The set \mathbf{R}^{+}of positive real numbers with the usual addition and multiplication is a division seminear-ring in which the left distributive

Received February 11, 1993.
law holds: that is, it is a division semiring. To obtain a family of right (but not left) division seminear-rings, we need the following notion.

If (G, \cdot) is a group and H, K are subgroups of G, we say G is a ZappaSzép (ZS) product of H and K, written $G=H * K$, if $G=H K$ and $H \cap K=1$. Note that any direct product is a $Z S$-product but not conversely. For example, if $G=S_{3}$ and $H=<(1,2)>, K=A_{3}$ then $G=H * K$ but S_{3} is not a direct product of any of its subgroups. The proof of the following result is straight-forward and so is omitted.

Lemma 1. If $G=H * K$ for some subgroups H, K of a group G, then $G=K * H$ and
(a) for each $x \in G$ there exist unique $h_{1}, h_{2} \in H$ and $k_{1}, k_{2} \in K$ such that $x=h_{1} k_{1}=k_{2} h_{2}$, and
(b) for each $h \in H, k \in K$ there exist unique $h^{\prime} \in H$ and $k^{\prime} \in K$ such that $h^{\prime} k=k^{\prime} h$.

The next result provides a way of constructing division seminear-rings which are not division semirings.
Theorem 1. If $G=H * K$ for some subgroup H, K of group G, then there exists a unique binary operation + on G such that $(G,+, \cdot)$ is a division seminear-ring in which $(G,+)$ is a rectangular band containing H and K as left and right zero subsemigroups respectively and $G=H+K$.
Proof. Let $x_{1}, x_{2} \in G$. By Lemma 1, we can write $x_{1}=k_{1} h_{1}, x_{2}=h_{2} k_{2}$ and $h_{1}^{\prime} k_{2}=k_{2}^{\prime} h_{1}$ for suitable unique elements of H and K. In this case, we define $x_{1}+x_{2}$ to be $h_{1}^{\prime} k_{2}$.

Suppose $x \in G$ and $x=k h_{1}=h k_{1}$. Then, by uniqueness and the definitions, $h_{1}=1 \cdot h_{1}, k_{1}=1 \cdot k_{1}$ imply that $h_{1}+k_{1}=h k_{1}=x$. Moreover, if $x=h+k=h^{\prime} k=k^{\prime} h$ then $h^{\prime} k=h k_{1}$ and uniqueness implies $k=k_{1}$; similarly, $h=h_{1}$ and we have shown that for each $x \in G$, there are unique $h \in H, k \in K$ such that $x=h+k$. In addition, if $h k_{1}=k h_{1}$ and $h^{\prime} k_{2}=k^{\prime} h_{2}$ then $\left(h_{1}+k_{1}\right)+\left(h_{2}+k_{2}\right)=k h_{1}+h^{\prime} k_{2}$. Hence, if $h^{\prime \prime} k_{2}=k^{\prime \prime} h_{1}$ then $\left(h_{1}+k_{1}\right)+\left(h_{2}+k_{2}\right)=h_{1}+k_{2}$. Now, it is well-known that $H \times K$ under the operation:

$$
\left(h_{1}, k_{1}\right) \otimes\left(h_{2}, k_{2}\right)=\left(h_{1}, k_{2}\right)
$$

is a rectangular band [1]. And, from the foregoing remarks, $f: G \rightarrow$ $H \times K, h+k \rightarrow(h, k)$, is an isomorphism from $(G,+)$ onto $(H \times K, \otimes)$. Thus, $(G,+)$ is a rectangular band in which H is a left zero semigroup.

For, if $h \in H$ then $h \cdot 1=1 \cdot h$ implies that $h+1=h \cdot 1=h$ and so H is isomorphic under f to $H \times 1$, a left zero subsemigroup of $(H \times K, \otimes)$.

To show that $(G,+, \cdot)$ is right distributive, let $x, y, z \in G$ and write

$$
\begin{aligned}
& x z=h_{1}+k_{1}=h_{1}^{\prime} k_{1}=k_{1}^{\prime} h_{1} \\
& y z=h_{2}+k_{2}=h_{2}^{\prime} k_{2}=k_{2}^{\prime} h_{2} .
\end{aligned}
$$

Then, if $x=h_{3} k_{3}=k_{4} h_{4}$ and $y=h_{5} k_{5}=k_{6} h_{6}$, we have $z=x^{-1} k_{1}^{\prime} h_{1}=$ $y^{-1} h_{2}^{\prime} k_{2}$ and so

$$
k_{4}^{-1} k_{1}^{\prime} h_{1}=h_{4} k_{5}^{-1} \cdot h_{5}^{-1} h_{2}^{\prime} k_{2}=k_{7} h_{7} \cdot h_{5}^{-1} h_{2}^{\prime} k_{2}
$$

for some h_{7}, k_{7} in G. Since $h_{7} h_{5}^{-1} h_{2}^{\prime} \in H$ and $k_{7}^{-1} k_{4}^{-1} k_{1}^{\prime} \in K$, we conclude that $x z+y z=h_{1}+k_{2}$ and this equals $h_{7} \cdot h_{5}^{-1} h_{2}^{\prime} k_{2}$. But, $x=h_{4}+k_{3}, y=$ $h_{6}+k_{5}$ and so

$$
\begin{aligned}
(x+y) z & =\left[\left(h_{4}+k_{3}\right)+\left(h_{6}+k_{5}\right)\right] y^{-1} h_{2}^{\prime} k_{2} \\
& =\left(h_{4}+k_{5}\right)\left(h_{5} k_{5}\right)^{-1} h_{2}^{\prime} k_{2}=h_{7} h_{5}^{-1} h_{2}^{\prime} k_{2} \\
& =x z+y z
\end{aligned}
$$

since $h_{4}+k_{5}=h_{4}^{\prime} k_{5}=k_{5}^{\prime} h_{4}$ implies that $h_{4}^{\prime}=h_{7}$. Finally, to show + is unique, suppose \oplus is another operation for which (G, \oplus, \cdot) has the same properties as $(G,+, \cdot)$. Now, under the stated conditions, $k+h=$ $(1+k)+(h+1)=1+(k+h)+1=1$. Thus, if $h \oplus k=h_{1} k_{1}=k_{2} h_{2}=h_{2}+k_{1}$. Then

$$
1=1 \oplus k h^{-1} \oplus 1=(h \oplus k) h^{-1} \oplus 1=k_{2} h_{2} h^{-1} \oplus 1
$$

and so $1=k_{2} \oplus h h_{2}^{-1}=\left(k_{2} h_{2} h^{-1} \oplus 1\right) h h_{2}^{-1}=h h_{2}^{-1}$. Hence, $h=h_{2}$ and similarly $k=k_{1}$. So, if $x, y \in G$ satisfy $x=h_{1} \oplus k_{1}=h_{1}+k_{1}$ and $y=h_{2} \oplus k_{2}=h_{2}+k_{2}$ then $x \oplus y=h_{1} \oplus k_{2}=h_{1}+k_{2}=x+y$, as required.

With the same notation as in Theorem 1, it can be shown that $(G,+)$ is always isomorphic to the direct product of $(H,+)$ and $(K,+)$. On the other hand, the division seminear-ring $(G,+, \cdot)$ is left distributive if and only if (G, \cdot) is the direct product of (H, \cdot) and (K, \cdot).

We say that the division seminear-ring defined in Theorem 1 is induced by the $Z S$-product $G=H * K$. In the finite case, we can prove the converse of Theorem 1.

Theorem 2. Every finite division seminear-ring D is induced by a $Z S$ product of multiplicative subgroups of D.
Proof. Since $(D,+)$ is a finite semigroup, $d+d=d$ for some $d \in D[1]$ and so $x+x=(d+d) d^{-1} x=x$ for all $x \in D$. Now, let $H=\{x \in D: x+1=x\}$ and $K=\{x \in D: x+1=1\}$ where 1 is the identity of (D, \cdot). Note that $H \cap K=1$ and if $x, y \in H$ then $x y+1=(x+1) y+1=x y+y=(x+1) y=$ $x y$: that is, $x y \in H$. Hence, since (D, \cdot) is a finite group, if $x \in H$ then $x^{n}=1$ for some $n \geq 1$ and $x^{-1}=x^{n-1} \in H$: that is, (H, \cdot) is a group, and the same holds for (K, \cdot). In particular, if $x, y \in H$ then $x y^{-1} \in H$ and so $x y^{-1}+1=x y^{-1}$: that is, $x+y=x$. Hence, if $u, v \in D$, we have $u+v+u=\left[1+\left(v u^{-1}+1\right)\right] u=u$ since $v u^{-1}+1 \in H$, and so $(D,+)$ is a rectangular band.

To show $D=H * K$, let $x \in D$ and note that $x+1 \in H$, and $x(x+1)^{-1}+1=(x+(x+1))(x+1)^{-1}=1$: that is, $x(x+1)^{-1} \in K$. Thus, $x=x(x+1)^{-1}(x+1) \in K H$ and so, by Lemma $1, D=H * K$. Finally, let $x, y \in D$, and note that $x=x(x+1)^{-1}(x+1) \in K H, y=$ $y(1+y)^{-1}(1+y) \in H K$ and if $z=(x+1)(1+y)^{-1}=z(z+1)^{-1}(z+1)$ then $(z+1)(1+y)=(z+1) z^{-1}(x+1)$ where $(z+1) z^{-1} \in K$. That is, if \oplus denotes the addition induced on D by the $Z S$-product of H and K then

$$
\begin{aligned}
x \oplus y & =(z+1)(1+y)=(x+1)+(1+y) \\
& =x+[1+(x+y)+1]+y=x+y,
\end{aligned}
$$

and this completes the proof.
It can be shown that two finite division seminear-rings are isomorphic if and only if there is a multiplicative group isomorphism between them that preserves the $Z S$-products of their subgroups, as specified by Theorem 2.

3. Seminear-fields

A right seminear-ring $(F,+, \cdot)$ is a seminear-field if there is $a \in F$ such that $a^{2}=a$ and $(F \backslash a, \cdot)$ is a group. In this case, we write $F_{a}=F \backslash a$ and say that F has base a.

If $F=\{a, x\}$ and we define operations + and \cdot on F so that $(F,+)$ is a right zero semigroup and (F, \cdot) is a band with a as an identity then $(F,+, \cdot)$ is a seminear-field in which both F_{a} and F_{x} are multiplicative groups. On the other hand, it is easy to check that if $(F,+, \cdot)$ is any seminear-field
with $|F|>2$ then there is a unique $a \in F$ such that $a^{2}=a$ and $\left(F_{a}, \cdot\right)$ is a group.

Theorem 3. If $(F,+, \cdot)$ is a seminear-field with base a, then F belongs to one of the following categories of seminear-field.
I. $a x=x a=a$ for all $x \in F$, II. $a x=x a=x$ for all $x \in F$, III. $a x=a$ and $x a=x$ for all $x \in F$, IV. $a x=x$ and $x a=a$ for all $x \in F$.
Proof. Let 1 denote the identity of F_{a} and suppose $a \cdot 1=a$. If $x \in F_{a}$ and $a x \neq a$ then there exists $y \in F_{a}$ with $(a x) y=1$ and so $a=a(a x) y=1$, a contradiction. That is, if $a \cdot 1=a$ then $a x=a$ for all $x \in F$. If $a \cdot 1 \neq a$ then $(a \cdot 1)^{2}=a \cdot 1$ implies $a \cdot 1=1$ and so $a x=x$ for all $x \in F$. Similarly, we can establish the disjunction: $x a=a$ for all $x \in F$ or $x a=x$ for all $x \in F$, and this proves the result.

Note that any division ring is a category I seminear-field (with $a=0$), so there is little hope of describing all seminear-fields in category I. On the other hand, those in categories II-IV can be completely characterised.

Theorem 4. If F is a category II seminear-field with base a, then $\left(F_{a},+, \cdot\right)$ is a division seminear-ring. Conversely, suppose $(D,+, \cdot)$ is any division seminear-ring and $a \notin D$. Then the operations on D can be extended to $D^{*}=D \cup a$ so that $\left(D^{*},+, \cdot\right)$ is a category II seminear-field.
Proof. If $x, y \in F_{a}$ and $x+y=a$ then $1=a \cdot 1=x \cdot 1+y \cdot 1=a$, a contradiction. Hence, $\left(F_{a},+, \cdot\right)$ is a division seminear-ring. If D is any division seminear-ring and we extend its operations so that $a x=x a=x$ and $x+a=x+1, a+x=1+x$ then it can be checked that $\left(D^{*},+, \cdot\right)$ is a category II seminear-field.

Theorem 5. If F is a category III or IV seminear-field with base a, then $|F|=2$.
Proof. If F is category III and $x \in F_{a}$ then $x^{2}=(x a) x=x(a x)=x$ and so $x=1$. A similar argument works for when F is category IV.

It can be shown that there are only five pairwise non-isomorphic possibilities for the additive structure of category III seminear-fields; namely:

$$
\begin{array}{ccccccccc}
+ & a & 1 & & + & a & 1 & & + \\
a & 1 \\
a & a & a & & a & a & a & & a \\
a & 1 \\
1 & a & 1 & & 1 & 1 & 1 & & 1
\end{array} a
$$

+	a	1		+	a
a	a	a		a	a
1					
1	a	a	1	1	a

Likewise, it can be shown that there are only three pairwise non-isomorphic possibilities for the additive structure of category IV seminear-fields: namely, the first three tables listed above.

References

[1] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol.1, Amer. Math. Soc., Providence, RI.
[2] S. S. Mitchell and P. Sinutoke, The theory of semifields, Kyungpook Math. J., 22(1981) 325-347.
[3] J. Hattakosol, Seminear-fields, MSc thesis, Department of Mathematics, Chulalongkorn University, 1984.

Department of Mathematics, Prince of Songkla University, Hat Yai, 90112 , Thailand.

Department of Mathematics, Chulalongkorn University, Bangkok, 10330, Thailand.

