DIVISION SEMINEAR-RINGS

J. Ayaragarnchanakul and S. Mitchell

We show that any finite division seminear-ring is uniquely determined by the Zappa-Szép product of two multiplicative subgroups, and classify all seminear-fields in three out of four categories.

1. Introduction

In [2] the authors investigated semifields in which the addition and multiplication are both commutative. In [3] the first author extended most of the work in [2] to the non-commutative case: this paper outlines the more significant results in [3].

2. Seminear-rings

We say that $(S, +, \cdot)$ is a **right seminear-ring** if S is a set with two binary operations + and \cdot such that (S, +) and (S, \cdot) are semigroups and the right distributive law holds: (x + y)z = xz + yz for all $x, y, z \in S$. A left seminear-ring is similarly defined, and if S is both a left and a right seminear-ring then it is a semiring. An important example of a right seminear-ring is obtained by starting with an arbitrary semigroup (S, +)and letting M(S) denote the set of all maps from S into itself; if + and \cdot are defined on M(S) as pointwise addition and composition respectively, then $(M(S), +, \cdot)$ is a right seminear-ring which is not left distributive provided |S| > 1.

In what follows, the word 'seminear-ring' will mean a 'right seminearring'. A **division** seminear-ring is a seminear-ring $(D, +, \cdot)$ in which (D, \cdot) is a group. The set \mathbf{R}^+ of positive real numbers with the usual addition and multiplication is a division seminear-ring in which the left distributive

Received February 11, 1993.

law holds: that is, it is a division semiring. To obtain a family of right (but not left) division seminear-rings, we need the following notion.

If (G, \cdot) is a group and H, K are subgroups of G, we say G is a **Zappa-Szép** (**ZS**) product of H and K, written G = H * K, if G = HK and $H \cap K = 1$. Note that any direct product is a ZS-product but not conversely. For example, if $G = S_3$ and $H = \langle (1,2) \rangle, K = A_3$ then G = H * K but S_3 is not a direct product of any of its subgroups. The proof of the following result is straight-forward and so is omitted.

Lemma 1. If G = H * K for some subgroups H, K of a group G, then G = K * H and

(a) for each $x \in G$ there exist unique $h_1, h_2 \in H$ and $k_1, k_2 \in K$ such that $x = h_1k_1 = k_2h_2$, and

(b) for each $h \in H, k \in K$ there exist unique $h' \in H$ and $k' \in K$ such that h'k = k'h.

The next result provides a way of constructing division seminear-rings which are not division semirings.

Theorem 1. If G = H * K for some subgroup H, K of group G, then there exists a unique binary operation + on G such that $(G, +, \cdot)$ is a division seminear-ring in which (G, +) is a rectangular band containing H and K as left and right zero subsemigroups respectively and G = H + K.

Proof. Let $x_1, x_2 \in G$. By Lemma 1, we can write $x_1 = k_1h_1, x_2 = h_2k_2$ and $h'_1k_2 = k'_2h_1$ for suitable unique elements of H and K. In this case, we define $x_1 + x_2$ to be h'_1k_2 .

Suppose $x \in G$ and $x = kh_1 = hk_1$. Then, by uniqueness and the definitions, $h_1 = 1 \cdot h_1$, $k_1 = 1 \cdot k_1$ imply that $h_1 + k_1 = hk_1 = x$. Moreover, if x = h + k = h'k = k'h then $h'k = hk_1$ and uniqueness implies $k = k_1$; similarly, $h = h_1$ and we have shown that for each $x \in G$, there are unique $h \in H$, $k \in K$ such that x = h + k. In addition, if $hk_1 = kh_1$ and $h'k_2 = k'h_2$ then $(h_1 + k_1) + (h_2 + k_2) = kh_1 + h'k_2$. Hence, if $h''k_2 = k''h_1$ then $(h_1 + k_1) + (h_2 + k_2) = h_1 + k_2$. Now, it is well-known that $H \times K$ under the operation:

$$(h_1, k_1) \otimes (h_2, k_2) = (h_1, k_2)$$

is a rectangular band [1]. And, from the foregoing remarks, $f : G \to H \times K$, $h + k \to (h, k)$, is an isomorphism from (G, +) onto $(H \times K, \otimes)$. Thus, (G, +) is a rectangular band in which H is a left zero semigroup.

Division seminear-rings

For, if $h \in H$ then $h \cdot 1 = 1 \cdot h$ implies that $h + 1 = h \cdot 1 = h$ and so H is isomorphic under f to $H \times 1$, a left zero subsemigroup of $(H \times K, \otimes)$.

To show that $(G, +, \cdot)$ is right distributive, let $x, y, z \in G$ and write

$$xz = h_1 + k_1 = h_1'k_1 = k_1'h_1$$

$$yz = h_2 + k_2 = h'_2 k_2 = k'_2 h_2.$$

Then, if $x = h_3k_3 = k_4h_4$ and $y = h_5k_5 = k_6h_6$, we have $z = x^{-1}k'_1h_1 = y^{-1}h'_2k_2$ and so

$$k_4^{-1}k_1'h_1 = h_4k_5^{-1} \cdot h_5^{-1}h_2'k_2 = k_7h_7 \cdot h_5^{-1}h_2'k_2$$

for some h_7, k_7 in G. Since $h_7h_5^{-1}h_2' \in H$ and $k_7^{-1}k_4^{-1}k_1' \in K$, we conclude that $xz + yz = h_1 + k_2$ and this equals $h_7 \cdot h_5^{-1}h_2'k_2$. But, $x = h_4 + k_3, y = h_6 + k_5$ and so

$$(x+y)z = [(h_4+k_3) + (h_6+k_5)]y^{-1}h'_2k_2$$

= $(h_4+k_5)(h_5k_5)^{-1}h'_2k_2 = h_7h_5^{-1}h'_2k_2$
= $xz + yz$

since $h_4 + k_5 = h'_4 k_5 = k'_5 h_4$ implies that $h'_4 = h_7$. Finally, to show + is unique, suppose \oplus is another operation for which (G, \oplus, \cdot) has the same properties as $(G, +, \cdot)$. Now, under the stated conditions, k + h = (1+k)+(h+1) = 1+(k+h)+1 = 1. Thus, if $h \oplus k = h_1 k_1 = k_2 h_2 = h_2 + k_1$. Then

$$1 = 1 \oplus kh^{-1} \oplus 1 = (h \oplus k)h^{-1} \oplus 1 = k_2h_2h^{-1} \oplus 1$$

and so $1 = k_2 \oplus hh_2^{-1} = (k_2h_2h^{-1} \oplus 1)hh_2^{-1} = hh_2^{-1}$. Hence, $h = h_2$ and similarly $k = k_1$. So, if $x, y \in G$ satisfy $x = h_1 \oplus k_1 = h_1 + k_1$ and $y = h_2 \oplus k_2 = h_2 + k_2$ then $x \oplus y = h_1 \oplus k_2 = h_1 + k_2 = x + y$, as required.

With the same notation as in Theorem 1, it can be shown that (G, +) is always isomorphic to the direct product of (H, +) and (K, +). On the other hand, the division seminear-ring $(G, +, \cdot)$ is left distributive if and only if (G, \cdot) is the direct product of (H, \cdot) and (K, \cdot) .

We say that the division seminear-ring defined in Theorem 1 is induced by the ZS-product G = H * K. In the finite case, we can prove the converse of Theorem 1. **Theorem 2.** Every finite division seminear-ring D is induced by a ZS-product of multiplicative subgroups of D.

Proof. Since (D, +) is a finite semigroup, d + d = d for some $d \in D[1]$ and so $x+x = (d+d)d^{-1}x = x$ for all $x \in D$. Now, let $H = \{x \in D : x+1 = x\}$ and $K = \{x \in D : x + 1 = 1\}$ where 1 is the identity of (D, \cdot) . Note that $H \cap K = 1$ and if $x, y \in H$ then xy+1 = (x+1)y+1 = xy+y = (x+1)y =xy: that is, $xy \in H$. Hence, since (D, \cdot) is a finite group, if $x \in H$ then $x^n = 1$ for some $n \ge 1$ and $x^{-1} = x^{n-1} \in H$: that is, (H, \cdot) is a group, and the same holds for (K, \cdot) . In particular, if $x, y \in H$ then $xy^{-1} \in H$ and so $xy^{-1} + 1 = xy^{-1}$: that is, x + y = x. Hence, if $u, v \in D$, we have $u + v + u = [1 + (vu^{-1} + 1)]u = u$ since $vu^{-1} + 1 \in H$, and so (D, +) is a rectangular band.

To show D = H * K, let $x \in D$ and note that $x + 1 \in H$, and $x(x+1)^{-1} + 1 = (x + (x+1))(x+1)^{-1} = 1$: that is, $x(x+1)^{-1} \in K$. Thus, $x = x(x+1)^{-1}(x+1) \in KH$ and so, by Lemma 1, D = H * K. Finally, let $x, y \in D$, and note that $x = x(x+1)^{-1}(x+1) \in KH$, $y = y(1+y)^{-1}(1+y) \in HK$ and if $z = (x+1)(1+y)^{-1} = z(z+1)^{-1}(z+1)$ then $(z+1)(1+y) = (z+1)z^{-1}(x+1)$ where $(z+1)z^{-1} \in K$. That is, if \oplus denotes the addition induced on D by the ZS-product of H and K then

$$x \oplus y = (z+1)(1+y) = (x+1) + (1+y) = x + [1 + (x+y) + 1] + y = x + y,$$

and this completes the proof.

It can be shown that two finite division seminear-rings are isomorphic if and only if there is a multiplicative group isomorphism between them that preserves the ZS-products of their subgroups, as specified by Theorem 2.

3. Seminear-fields

A right seminear-ring $(F, +, \cdot)$ is a seminear-field if there is $a \in F$ such that $a^2 = a$ and $(F \setminus a, \cdot)$ is a group. In this case, we write $F_a = F \setminus a$ and say that F has base a.

If $F = \{a, x\}$ and we define operations + and \cdot on F so that (F, +) is a right zero semigroup and (F, \cdot) is a band with a as an identity then $(F, +, \cdot)$ is a seminear-field in which both F_a and F_x are multiplicative groups. On the other hand, it is easy to check that if $(F, +, \cdot)$ is any seminear-field

with |F| > 2 then there is a unique $a \in F$ such that $a^2 \doteq a$ and (F_a, \cdot) is a group.

Theorem 3. If $(F, +, \cdot)$ is a seminear-field with base a, then F belongs to one of the following categories of seminear-field.

I. ax = xa = a for all $x \in F$, II. ax = xa = x for all $x \in F$, III. ax = a and xa = x for all $x \in F$, IV. ax = x and xa = a for all $x \in F$.

Proof. Let 1 denote the identity of F_a and suppose $a \cdot 1 = a$. If $x \in F_a$ and $ax \neq a$ then there exists $y \in F_a$ with (ax)y = 1 and so a = a(ax)y = 1, a contradiction. That is, if $a \cdot 1 = a$ then ax = a for all $x \in F$. If $a \cdot 1 \neq a$ then $(a \cdot 1)^2 = a \cdot 1$ implies $a \cdot 1 = 1$ and so ax = x for all $x \in F$. Similarly, we can establish the disjunction: xa = a for all $x \in F$ or xa = x for all $x \in F$, and this proves the result.

Note that any division ring is a category I seminear-field (with a = 0), so there is little hope of describing all seminear-fields in category I. On the other hand, those in categories II-IV can be completely characterised.

Theorem 4. If F is a category II seminear-field with base a, then $(F_a, +, \cdot)$ is a division seminear-ring. Conversely, suppose $(D, +, \cdot)$ is any division seminear-ring and $a \notin D$. Then the operations on D can be extended to $D^* = D \cup a$ so that $(D^*, +, \cdot)$ is a category II seminear-field.

Proof. If $x, y \in F_a$ and x + y = a then $1 = a \cdot 1 = x \cdot 1 + y \cdot 1 = a$, a contradiction. Hence, $(F_a, +, \cdot)$ is a division seminear-ring. If D is any division seminear-ring and we extend its operations so that ax = xa = x and x + a = x + 1, a + x = 1 + x then it can be checked that $(D^*, +, \cdot)$ is a category II seminear-field.

Theorem 5. If F is a category III or IV seminear-field with base a, then |F| = 2.

Proof. If F is category III and $x \in F_a$ then $x^2 = (xa)x = x(ax) = x$ and so x = 1. A similar argument works for when F is category IV.

It can be shown that there are only five pairwise non-isomorphic possibilities for the additive structure of category III seminear-fields; namely:

+	a	1	+	a	1	+	a	1
a	a	a	a	a	a	a	a	1
1	a	1	1	1	1	1	a	1

+	a	1	+	a	1
a	a	a	a	a	1
1	a	a	1	1	a

Likewise, it can be shown that there are only three pairwise non-isomorphic possibilities for the additive structure of category IV seminear-fields: namely, the first three tables listed above.

References

- A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol.1, Amer. Math. Soc., Providence, RI.
- [2] S. S. Mitchell and P. Sinutoke, The theory of semifields, Kyungpook Math. J., 22(1981) 325-347.
- [3] J. Hattakosol, Seminear-fields, MSc thesis, Department of Mathematics, Chulalongkorn University, 1984.

DEPARTMENT OF MATHEMATICS, PRINCE OF SONGKLA UNIVERSITY, HAT YAI, 90112, THAILAND.

Department of Mathematics, Chulalongkorn University, Bangkok, 10330, Thailand.