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Partially Parametric Estimation
of Lifetime Distribution
from a Record of Failures and Follow-Ups*

Byoung Chang Yoon
Dept. of Mathematics, Korea Military Academy

Abstract

In some observational studies, we have often random censoring model.
However, the data available may be partially observable censored data consisting
of the observed failure times and only those nonfailure times which are subject to
follow-up. In this paper, we present an extension of the problem of partially
parametric estimation of the survival function to such partially observable
censored data. The proposed estimator treats the observed failure times
nonparametrically and uses a parametric model only for those nonfailure time:
which are subject to follow-up. We discuss the motivation and construction of the
proposed estimator and investigate the limiting properties of the proposerd
estimator such as asymptotic normality. Also, when the assumed parametris
model is exponential, the asymptotic variance of the estimator is obtained.
Furthermore, an example is given to compare the proposed estimator with the
modified Kaplan -Meier (MKM) estimator. From the results, it is shown that the
relative efficiency of the proposed estimator is higher than that of the MKM
estimator in the follow-up study with increasing time.

1. Introduction

The random censoring model is often used to achieve theoretical results in the
area of reliability analysis in engineering and in the area of survival analysis in
medical applications. This model is described as follows: Let (X,,Y,).i=1, 2, --.
N, be independent, identically distributed pairs of random variables. X, is the
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variable of interest (e.g., the lifetime of an item, the age at death, etc.), and Y, is
some independent censoring variable (e.g., the period of an observational or follow-
up study, the warranty period, etc.). The observed quantity is the pair (T, §,),

where

T, =min(X;,Y;)
6, = INX.<Y,),i=1, 2, ---, N.

(Here I( ) denotes the indicator function of the set { - }). From these pairs (7.
6:),i=1, 2, .-, N, the lifetime distribution of X, is estimated.

In some observational studies, not all of the data (7T, §;), i=1, 2, ---, N, are
observed; that is, for some data pairs, only §, is observed without the additional
information about 7°,. Therefore the data set consists of

{((T.,8,).1<i<n and §,, n+l<i<N

This kind of partially observable censored data arises in a variety of situations(cf.
Suzuki(1985)).

Suzuki (1985) discussed the problem of nonparametric estimation of the survival
function from such partially observable censored data. He compared the modified
Kaplan-Meier ( MKM) estimator with the Kaplan-Meier (KM; 1958) estimator
based only on the follow-up data and the KM estimator applied to all of the data
for which 7 is observed, and showed that the KM estimator applied to the
randomly censored data underestimates the survival function and the KM
estimator based only on the follow-up data gives a less biased estimate than the
KM estimator applied to the randomly censored data but a larger variance than the
MKM estimator. Also, he showed that the asymptotic behavior of the estimator
is used to study the effect of a follow-up percentage on the precision on the
estimator.

Tiwari et al. (1999) discussed the problem of nonparametric Bayes estimation of
the survival function for such data of failures and follow-ups under a Dirichlet
process prior and squared error loss. They compared the Bayes estimator with
the MKM estimator and Susarla and Van Ryzin’s(1976) estimator which is based
on the randomly censored data (not on the lost observations), and showed that the
Bayves estimator is a generalization of the MKM estimator and Susarla and Van
Ryzin's estimator underestimates the survival function by using the data which is
a modification of the data given in Kaplan and Meier (1958) and used by Susarla
and Van Ryzin (1976).
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In an observational study of an industrial product, sometimes only the time until
failure is observable from the repair requests made by the owner, but nonfailure
times are not observable. This paper is concerned with estimation from such
partially observable censored data, with making partially parametric assumption.

2. Assumptions and Notations

In this section, we add the assumptions and notations to be used throughout to
those in Section 1. Let F (f)=Pr(X,>f) be the survival function of the randorn
variable of interest X, and let G(t)=Pr(Y,>1) be the survival function of the
censoring random variable Y. Assume that X, and Y. are independent for all ;.
Define the survival function of 7, by S*(t)=Pr(T;>t), and the subsurvival
functions S*(- ) and S*( - ) by S*(O)=Pr(T.>t, 6, =1) and S*#)=Pr(T. >, 5, =01,
and the subdistribution function F.*(-) by F*t)=Pr(T;<t, 6;=0). Note that
S*(t)=S5*@#)+S.*(t} Furthermore, define the two conditional survival functions of
T, given &, by S/t)=Pr(T.>t|6,=1) and Sy@O)=Pr(T,>t]5,=0), and the
conditional distribution function Fy{(-) by F/(#)=Pr(T,<t|5,=0). Let the
known constants /,(i=1, 2, ---, N) be as follows: D, =1 if ith item is followed up,
and D, =0 if it is not. If 7¢th item is a failure, then 7'; is observed irrespective of
the value of DD, but if it is not a failure then 7', is observed only when D, =1. Let
n., n., and #n, denote the number of uncensored observations, censored observations
that are followed up, and censored observations that are not followed up(lost:,
respectively. Note that

N N N
n, = E:J oy, n= Z (1-6.)D:,n = ; (1-6:)Q-D:).
Here N =n,+n.+n,.

Also, define n=n,+n, and p*=3 )., D,/N, where p* represents the fraction of
items that are followed up. Assume p*=#./(n.+n,;) and p*>0.

3. The Proposed Estimator
In this section, we propose a partially parametric estimator of the survival

function in the presence of partially observable censored data. Let S(- | 8) be the
assumed parametric model for F( - ), where 8 is an unknown parameter. Let 9 be
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a consistent estimator of ¢ based on the censored sample { (T, §;), 1<i<»m and 6.,
n+1<i<N} The proposed estimator is constructed by analogy to the randomly
censored data problem(cf. Klein et al. (1990)}. In the partially observable censored
data problem we observe points along the line X =Y =7 with a ray of possible
values of the unobservable coordinate (see Figure 3.1). For those pairs (T, 6, =1)
with 7, >t (ray a in Figure 3.1) we are sure that the corresponding X, is greater
than ¢. For pairs (T;, 8, =0) with T, >¢ and D, (ray b in Figure 3.1) the mass of
the true X; being greater than ¢ is 1+#,/n.. For pairs (T, §; =1) with T <t (ray
¢ in Figure 3.1) we are sure that X; is less than or equal to . When T, <¢, 6, =0
and D; (ray d in Figure 3.1) we cannot determine with certainty if the true
unobservable X, is greater than ¢ or not. In this case an estimate of the chance
of the true X, being greater than ¢, in light of the observable information (T, §.)
and D, is

(145 Pr(X > T =t 6, =0 =( 1+ ) Pr(X, >t | X, >T.. Y, =T))

which, using the assumed parametric model S( - |8) for F, is (1+n,/n.)S( | 0)/
S(T.16).

|
i
|
5= 1 /f/
l§
|
|
|
i
|
}
I

t X

( Figure 3.1 ) Four possible rays in the censored data situation.
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This suggests the following estimator:

FO = LoltISC 10N, (3.1)
where
1 if T.>1, 6, =1
) 1+ if T.>4,6,=0,D, =1
p:t1S(C-10)= ", (3.2
O ]f T;St,5;==1
(1 +_7:l'l'°) _§(—t“—|"2?"“ |f T,' St, 5,» ::0, D,' =].
n. S(T.|0

The proposed estimator treats the observed failure times nonparametrically an:
uses a parametric model only for those nonfailure times which are subject to follow -
up. Note that Klein’s(1990) partially parametric estimator for the randomly
censored data is cbtained from F® by substituting », =0. Define Fi@®=0/n.)
ST, <t, 5, 0D, and Fr@®) =N+ /m N 1T <t, 8, =00D;. Fs(1)
and F,*(¢) are the generalized maximum likelihood estimators(GMLE’s; cf. Kiefer
and Wolfowitz(1956)) of F.(t) and F,*t), respectively. Then the proposed
estimator is a function of the GMLE’s $*(¢), S*(®), and F,*(*) but it is not the
GMLE.

4. Properties of The Estimator

In this section, we investigate the limiting properties of the proposed estimator
such as asymptotic normality. Up to the unknown parameter 6, assume that S()
=F(t) for all £. In this case, we can present an alternate expression for F(¢) as
follows:

F) = Sro+8r0+ S GE 0 (4.1

St
Sul|6)

where

SO = UNTLIT >t 68, =1),
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S) = A/NYA + 0o, e DI I(T, >, 6, =0) D;, and
Fo®) = A/NA +0u/n )TV, I(T: <t, 5, =0) D,

This representation allows us to prove the following theorem:

Theorem 41 Assume X, and Y. are independent and St |0)=F @) under the
partially observable censoring model. If 0—0 with probability 1, then F()—>F (¢)
uniformly in t with probability 1.

Proof. First note that S*(®)—S*®)=Pr(T.>t, 6,=1=["[1-Gw)]dF &)
uniformly in ¢ with probability 1(w.p.1);

S*O= p-Si®—p- S(B)=Se@t)=Pr(T;>t, 6, =0)=/"[1-F ()] dG () uniformly
int wp.l; FXt)= b+ Fs()—p - F5®)=F¢)=Pr(T. <t, 5, =0) uniformly in ¢ w.p.
1; and

S¢lo)__ _F@
Swl®) — Fl

almost surely (a.s.).

Also note that

F@®)

Fo) = S10+sr0+ ] = o AF. (4.2)
Let
Vi (8) = SHO=S*®), Vo () = SHO—SH0),
Vi ) = Fr@)~F*@), (4.3
and
Wl w) - SELO __FO) (4.4)

Slu | 6) Fw)

It follows that

FO-FO =Va® + Vu@® + [ Wat, 0dF @)

¢ F@) 't .
+ [ =y Vo) + IR AN} (4.5
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Since ?‘(t)~;:(t) is a continuous function Vy (£), Vo (), Vi (), and Wy (¢, ) in the
supnorm and each of these processes converges to (0 uniformly, the uniform
consistency of F () follows. [ ]

The representation (4.5) allows us to prove, by arguments very closely related to
those in Breslow and Crowly (1974), the following weak convergence result.

Theorem 42 Assume X, and Y. are independent and St |0)=F () under the
partially observable censoring model. If 9 is a comsistent estimator of 0 and

converges in distribution to a normal random variable, then NN (F(t) — F ()
converges weakly to a Gaussian process with mean 0.

Proof. From (4.5) it follows that

VN FO-F@) =VNVa®) + VNV & + [ VN Wi ¢, 0)dFw)
+VNVa® — FO [ VNV dF )

+ [N W, wdV @)
= Ay (t) + By (t) +Cy (t) + Dy (t) —Ey (t) + Ry (t), say.

Expanding W, (£, ») as a function of fina Taylor series about 4 yields

VNW @t w) =V NO—0d[S,(t6)/S.(u|0)]/d0 +0,(1). (4.7

So VNW,y (¢, u) converges to W (¢, ), a Gaussian process in ¢ and . Also, VN

V@), VN Vo (), and VN V. () converge weakly to Gaussian processes, V, (¢,

V. (). and V,(t), respectively. Note that Ay (), By (), Cu (), Dy (#), and Ey (#) ali

converge weakly in the supremum metric to Gaussian processes A(#), B(f), C(#).

D), and E(¢), respectively, and K. (f) converges a.s. to 0 in this metric. By

theorem 4.1, VN(FQ) - F®) converges weakly to a Gaussian process with mean 0
|

The evaluation of the limiting covariance is difficult, especially for estimators of
6 obtained by iterative techniques, since this covariance involves the limiting
covariance of

(VN (Sr0)=StuN, VN 6-0)), (VN (S-S, VN (6-0)),
and (VN (F*®-F®). VN 6-0)).
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However, this limiting covariance can be obtained in the exponential case given
below.

Corollary 41 Assume X, and Y, are independent with survival functions F ()
—exp(—at) and G(t)=exp(—pt), respectively, where a(>0) and B(>0) are the
unknown parameters. If S(t| 6)=exp(—t/0) and 0=X\.T./d, where d is the
observed number of failures (0 is the maximum likelihood estimator (MLE) of 6=
1/a), then

Zy(t) =~ N{Ft) exp(—£/0)}— Z({t) as N—o

b

(The notation “ -> " denotes “converges in law to”), where Z(t) is a Gaussian
process with mean 0 and

Var(Z (@)
[+ exp( —2at) — ot exp(—2at) + 2a't*
- exp( -—Zat) —2exp( ——Sat) + 24t exp( —3at)
+ gg exp( —dat) + —g—at exp( —dat)]
+ '5;’ D[ -5 EXD( —2at) + ot exp(—2at)
+ exp{ —3at) _T exp({ —4at) | if a=2§
B ~ 10a® —19af + B* _

[8(a‘+ﬁ)2 + 8ﬁ (a"—ﬁ) exp( Zat)

=1 — 3——(2‘%4—2;%— texp(—2at) + ala + p)t* exp(—2at) (4.8)

+——~°~/ expi (a+ﬂ)t}-—7§-—exp{ (2a + B2}
a (6a’ +13ap +88%)

86 (a -+ B)°
cexpi—2(a+p)t] Tp;(zzﬂ—+«@yte«cp{ 2a +B)t}]

1l i a _ L 2B(a* +2aB—B*%)
+(p* DI pray’ exp( —2at) + @—F) (a + )’

cexpi—(a+pti + wFE exp{ -2« + Bt}

+ 2af expi-—-(2a + B¢} +

_a’t2g° e : T
@B exp{—2(a+p)t}] if # B.



R s o f’artia]ly Parametric Estimation of Lifetime Distribution -- 67

Proof. For the proof of this Corollary, only the evaluation of the limiting
variance of Z(#) is needed. First note that VN (#—8) converges in distribution to
a normal random variable with mean 0 and variance (a+p8)/a®. By (4.7) we have

VN Wt w) =N 0—0)(—wexpl—t—u)/8}/0° +0(1). (4.9
Hence

Cov (W (¢, w), W (x, 3)) = ala+p)t—u)(x—y)exp{—alt+x—u—y)}. (4.10)
Now by (4.9)

Cov NN V),V N Wy (x, )~ N(x—w)a’ expl — alx—u)} Cov(S*®), §). (4.11)

To evaluate Cov(S*(¢), 0) we have

Cov(S*(t), 0) = E[S*() 61— E[Sr®)E[0]
= ELI(T>1,5, =1 ]-S/OE[ L T.1E[d"]
= E[81T,>t, 6 =11S*@®)~ NSO E[d" )/ (a+p)
= UEIT,IT,>t.6,=1] + E[ . T,»])——aﬁ—ﬁ ISHOE[d]

B 1 , N—~1 . N . " 7-1

=tS*OE[d"']. (4.12

From Mendenhall and IL.ehman (1960), we note that
Eld"'] = (N=2(a+p)/N(N-1a. (4.13)

Combining (4.11), (4.12}, and (4.13) and taking the limit as N tends to infinity, we
obtain

NCov(V (t), Wx, w) = a* (x—u)texp{—[(a+Pt+alx—uw)]}. (4.14)
A similar argument is used to show that

NCov(V,(t), Wx, w) = ap(x —wtexpl{—[(a+Pt+alx—u)]} (4.15)
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and
NCov(V,(t), W(x, w) = —ap(x—witexp{—[(a+pi+alx—w)]}. (4.16)

Note that, since p*=n./(n.+n), E[Q+n,/n.)-d*]=Q/p*)E[d™']. By routine
calculations, we have the following (for ¢<x):

NCov V), V. (x) = a—i—Lﬂ [exp {—(at+p)x}

g e (—at P+, (4.17)

NCov(V,(#), V. () = 5 =47 [exp (= (atp)x}

—;‘% exp {—(a+p)¢+x)], (4.18)

; I R _
NCov(V, (1), V,(x)) 7 )’ (at+pexp{—(atpPx}

—aexp {—(at+pt}-pexp{—(atp)t+x)], (4.19)

NCow(V,(),V,(x) = — —-gﬁ——z— exp{—(a+pt+x)}, (4.20)
(at+p)

NCov (V1 (t), V':a (x)) = [eXD {'—(a+ﬁ)t}

_B
(at+p)?
—exp {—(a+p)E+x)}], (4.21)

and

PN S & _
NCov(V,(t), V,(x)) > ot p)’ [exp {—(at+p)t}

—exp { —(a+pPE+x)}]. (4.22)
From the representation (4.6) it follows that

Var(Z @) = Var(A))+Var(B@)+Var(C)+Var(Dt)+Var(E®)
+2 Cov (A, B()+2 Cov(A®), Ct)+2 Cov(A®), D)
-2 Cov(A®), E@)+2 Cov(B@®), C#)+2 Cov(B(t), D)) (4.23)
-2 Cov(B(®), Et)+2 Cov(C(®), D()—2 Cov(CQ), E(#)
-2 Cov(D(®), E(t)).
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From (4.17) we have

Var(A(@)

from (4.18),

Var(B()

from (4.10),

= a:-ﬁ [exp{~(a+ﬂ)t}—;-+a—ﬁ exp {—2(a+p)t}]; (4.24)

[

& g lexp (—atpti——Brexp (-2tpt) (4.2

Var(C(t)) = 2 _/; ‘ j::Cov_(W(t, ), W, x))dF*(u)dF,*(x)
= alatp)exp(—2at){ exp(—pi)+pi—1}2/8%; (4.26)
from (4.19),
Var(D() = z}. Blat(B—a)exp{—(a+p) ¢t}
~Bexpi{—2(a+pt}]/(at+p?; (4.271
from (4.19),
Var(E®) = 4 f, J, Con(V, ), V, ) F ¢)?dF " w)dF * (x)
2_ 2 - . (+B)2 eXp(2 t)
Vil pexp(—2at)] Za‘;(a'"'ﬂ) + Zaa
+ (@’ +p*)explla—p)t}  (atBlexplat)
) ap (a—B) af
+ ActBlexp B XD 2B et gyt if akp (4.28)
%;» exp( —2at) [ EXReal) iz“t)'
+at—exp(at)+exp(—at)—52(p~(~4?~2ﬁ] if a=§;
from (4.20),
Cov(AW®), B®) = —— B exp (—2(a+p)t}; (4.29)

(at+B)?
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from (4.14),

Cov(AW), C@) = [, Cov(V.(®), W, w)dF;*(u)
= a*texp {—Q2a+p)t}[(ft—1) +exp(—pt)]/B; (4.30)

from (4.21),

Cov(AD. D) = S [—expl-(atpt] +expi-2+ptil; (43D

from (4.21),

Co(A®, EQ) = [, Cov(V,(®), V,e) F®)IF " )

_aff _
ot p)’ exp{—(a+p)¢t}

+ ﬁ? exp{—Qa+p)t} (4.32)

- (Tf*'_%)z-exp{—z(a+ﬁ)t};

from (4.15),

Cov(B®, C@) = [ 'CovV,(8), W, w)dF,"(w)

at exp {—Qa+p)t} [(Bt—1) +exp(—B)]; (4.33)

ft

from (4.22),

Cov(B@®), D) = 7%*“ (Trf-W [—expl—(at+p)t} +exp{—2(a+pt}]; (4.34)

from (4.22),

Cov(B®), EW) = 3=, Coo V. t), V. @) FO)dF @)

I U R S (st
[ — exp{—(atp)t}

+ ?%6” exp{—Q2a-+tp)t) (4.35)

- _af — :
I exp{-—2(at+pit}];
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from (4.16)

Cov(C (), D) = [ Cov(V,(t), W(t, w)dF*(w)
= aexp(—at) [ft—1+exp(--pt)] [ —t exp{—(atp)t}]; (4.36)

from (4.16),

Cov(C®, ED) = [ [ Cov(V, (), Wit, 2)) FO)dF @) dF ™ (x)

+ [ [ Cov W, 2, Wit, i) FOAF wdF ' (x)

_ B | 8a’=2aptp"
16 (atp) 164°

exp(—2at)

+ Bt exp(~2al) S expl=(Qat Pt (43D
8a't+18a’ f+1la’p”

+ a’t’ expf~(2a+ﬂ)t} -+ 16ﬁz (a+ﬂ)2

- expl=26tpti + SEEIL texpi-2tpt);

from (4.19),

Cov (D), E1) = L f Cov(V, (), V.@) FOF (1)
, - _/i__ (
p* [( e a'+ﬂ exp(—at) +-Z e expl—(a+pt]
__B_ (2 _._L - '}
i exp!—2a+p)t} + wtf) exp{—2(atp)t}t] (4.38)

Substituting (4.24) through (4.38) into (4.23), we obtain the result (4.8) after some

tedious calculations.
[ ]

In the exponential case under the condition of partially observable censored dats,
the partial likelihood is

Lia, ) = fl (@ exp(—aT,) - exp(—pT; )V [ exp(—aT;) - Bexpl— ﬁTl)]1

N

= 'p exp[-—'(a+ﬁ)§ T: ]

Then, the MLE’s of a and f are
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( Figure 4.1 ) Asymptotic relative efficiency as p*=0.5.
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{ Figure 4.2 ) Asymptotic relative efficiency as p*=0.7.
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( Figure 4.4 ) Asymptotic relative efficiency as p*=1.0.
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Il

nu /Z :J:l Tl "
(N—-n,) /S % T:, respectively.

= KN
il

We can easily obtain a consistent estimator of the asymptotic variance by directly
replacing « and § in (4.8) by their MLE’s & and §.

By taking the limit in (3.3) and (3.4) of Suzuki(1985) as 2— co(cf. Tiwari and
Zalkikar (1990)), we note that in the exponential case the asymptotic variance of
the MKM estimator is

ﬁﬁ exp(—2at) [

—ﬁ-ﬁ— t expilatp)t}—apt? —-—;11’73— £, (4.39)
which is always greater than (4.8) when p*=1. Figures 4.1, 4.2, 4.3, and 4.4 show
plots of the asymptotic relative efficiency (ARE) for various values of p* as a
function of the censoring fraction p=8/(a+p) for a=1, 0<p<.5, at t=.1054, .6931,
and 2.303, that is, 10*, 50", and 90* percentiles of the survival distribution, where
the ARE is (4.39)/14.8). From these figures, note that the relative efficiency of
our proposed estimator improves with increased censoring subject to follow-up and
increasing time. From the comparison of the effect of the fraction of follow-up
and the percentile of the survival distribution, it is shown that the relative
efficiency of the proposed estimator is always higher than that of the MKM
estimator at 90™ percentile of the survival distribution regardless of the value of
p*. However, the relative efficiency of the proposed estimator tends to decrease
as p* increases. For small percentile of the survival distribution, the relative
efficiency of the proposed estimator is lower than that of the MKM estimator.
But the proposed estimator performs better as p* increases.

5. An Example

In this section we compare the proposed estimator f with the MKM estimator f
in the exponential case. This comparison is done by using the data in {Table 5.1)
which is a modification of the data given in Klein et al. (1990). Note that the total
number of observations is 51, of which 42 are observed T’s with 13 failures and 29
observed nonfailures(ie. N=51, =, =13, n. =29, n,=9). In this study 39 items
were followed up and hence p*=39/51+0.76. From the data in (Table 5.1}, we
obtain &=1/ §=9.38x10"* , B=2.74%x10" which are the MLE’'s of « and B in
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( Tabie 5.1 ) Failures and Follow-up data:
The proposed estimates F( ). the MKM estimates ?};( -),
V avar £(- ),\/avar £.(- ), and the ARE

N T, i, D; F(-) ?‘S( ) \/avm ';F( ) \/avar F () ARE

1 2 f 1 .980 .980 .037 .006 .026

2 27 { 1 961 961 047 022 219

3 32 0 1 961 961 048 024 250

4 43 ] 1 961 961 .051 028 301

5 50 | 0 941 940 053 030 320

6 55 ) 1 940 940 054 .032 351

7 62 i 1 920 919 056 033 347

8 82 ] 1 919 919 .059 .038 415

9 102 ] 1 917 919 .062 .043 481
10 103 ] 1 917 919 .062 .043 481
11 122 { 1 895 895 .065 .047 523

12 145 1) 1 .891 .895 067 051 579
13 148 i 1 871 871 067 051 579

14 158 0 .850 .847 .068 .053 607
15 162 | 1 830 822 069 053 590
16 194 D 1 .825 .822 071 058 667
17 250 i 1 815 822 074 066 795
138 251 a 1 796 796 074 .066 795
19 267 i 1 793 796 074 .068 844
20 276 : 1 a7 768 075 .069 .846
21 284 ih 1 769 768 075 070 871
22 292 ) 1 768 768 075 071 .896
23 319 1+ 1 761 768 076 075 974
24 326 th 1 759 .768 076 075 974
25 346 1] 1 753 768 077 078 1.026
26 365 1) 1 747 768 077 .080 1.079
27 404 1 1 734 .768 078 .084 1.160
28 417 | 1 710 27 078 .086 1.216
29 418 | 0 .690 686 078 086 1.216
30 423 i 1 .689 .686 .078 .086 1.216
31 438 ] 1 .683 .686 .078 .088 1.273
32 491 : 1 644 638 079 .093 1.386
33 584 f 1 612 638 .080 .103 1.658
34 595 i 1 .608 638 080 .104 1.690
35 613 £ 1 601 638 .080 106 1.756
36 642 { 1 590 638 .081 109 1.811
37 649 {1 1 587 638 .081 110 1.844
38 693 { 1 .568 .638 .081 114 1.981
39 707 i1 1 562 638 081 115 2.016
40 746 0 1 545 .638 .082 119 2.106
41 755 {1 1 541 638 082 120 2.142
42 826 {i 1 508 .638 082 128 2.467
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ESTIMATED SURVIVAL FUNCTION

3.04

2.51

2.0

1.51

1.0

0.51

p

0.0

0 100 200 300 400 500 600 700 800 900 1000

0.5

0.41

0.3

TIMES OF SURVIVAL

{ Figure 5.1 ) Asymptotic relative efficiency.
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{ Figure 5.2 } Estimated survival function for MKM estimates
and proposed estimates.
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Corollary 4.1. In {('Table 5.1), the proposed estimates ?"( + )and the MKM estimates
F.(-)are given. The approximations of VavarF(-) and v avar F.(-) and
the ARE are also given. Here, avar| - ] denotes the asymptotic variance of the
estimator.

{(Figure 5.1) displays the ratio of the approximation of avar ?( -) to the
approximation of avar F( ) in (Table 5.1) at the time of the survival functiorn.
From this figure, we note that the relatlve efficiency of F ( ) 1ncreases as the
time increases. The proposed estlmates F { - ) and the MKM estimates F ( ) are
plotted in (Figure 5.2). Note that F (- ) is defined for all ¢ where as Fs( - )is
undefined in the right tail when the largest observation is censored. In the plot
in the figure, ?"( - ) is seen to be smoother than f':( - ) in that the jumps at the
uncensored observations are not as large for Jﬁ( .

6. Conclusion and Remarks

In this paper, we proposed a partially parametric estimator of the survival
function in the presence of partially observable censored data. The partially
parametric estimator discussed by Klein et al. retained most of the distribution-
free properties of the KM estimator and, yet, allowed one to estimate the function
with reasonable accuracy in the tails. The partially observable censored data
discussed by Suzuki would arise in a variety of situations. Thus, the proposed
estimator treated the observed failure times nonparametrically and used a
parametric mode] only for those nonfailure times which are subject to follow-up.

In this paper, the asymptotic distribution of the proposed estimator was obtainer]
under the assumption that the assumed parametric model is exponential. Alsc,
the asymptotic variance, which is always less than that of the MKM estimator in
the exponential case when p*=1, was obtained after some tedious calculations.
The ARE of our proposed estimator improved with increased censoring subject tn
follow-up and increasing time but it did not improve with increased follow-ur.
especially at large /.

In conclusion, our proposed estimator based on the exponential distribution for
S(- | 9) performs better for the follow-up study with increasing time. But, our
estimator performs more poorly for small percent follow-up at small percentile of
survival function. Also, the evaluation of the asymptotic variance of the proposed
estimator under general parametric model is difficult. This problem will be
remained for further studies. Many case studies for partially observable censorerl
data also will be remained.
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