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Abstract

We investigate the small-sample behavior of the probability of rejection curves
and its perfomance for a equivalence testing procedure based on confidence
intervals which was developed with a motivation from bioequivalence studies.
This type of equivalence studies are conducted frequently in pharmaceutical
industries to compare the relative bioavailabilty of two formulations of a drug and
can be applied various fields where assurance of quality equivalence is needed.
From the Monte-Carlo simulation results we suggest proper sample sizes for the
equivalence testing procedure.

1. Introduction

In the conventional statistical hypotheses testing, a researcher’s own purpose is
to reject the null hypothesis in most cases. Thus after establishing appropriate
null and alternative hypotheses, one may conclude, based on the sample collected,
that he reject or fail to reject the null hypothesis. Unfortunately, however, failing
to reject a null hypothesis is not proof that the null hypothesis is true. It denotes
only that there is not sufficient evidence to conclude that the null hypothesis is
false. This testing principle imposes a serious logical problem on researchers
whose purposes are to show that the null hypothesis is true.

This kind of arguments on the logical problem present in statistical tests of
hypotheses is not new. Note, for instance, that the same argument holds for the
Pearson’s goodness-of-fit test. Refer to Inman '11994) for more details on the

Tol A 19943 5 of Bpof Abo) aha Wl el tu) o A U & HEghsE



A7 Probability of Rejection Curve for Equivalence Testing Procedure 103

debates exchanged between K. Pearson and R. A. Fisher. In this context some
statisticians call the goodness-of -fit test as the badness-of -fit test.

Consider a simple situation where we wish to show equivalence of two
population means. Assume as usual that we draw a sample of size #, from N (x,
s*) and another of size n, from N (.., %), and that both samples are independent
In this case we set H,: u, =x, and H,: u, #p,. As noted above failing to reject
the null hypothesis does not warrant statistically that two population means are
equal. In addition, since increasing the sample size tends to yield more power of
the tests, a small sample size or a less powerful research design is more
advantageous, as long as the power of the test is concerned, for researchers whe
wish to show the equivalence of two population means.

Difficulty of statistical assessment of equivalence of two population means has
been well-known, especially, in pharmaceutical industries and regulartory agencies
of government such as the U. S. Food and Drug Administration (FDA) dealing
with approval of a newly-developed pharmaceutical product. In this arena one
must make decisions as to bioequivalence of pharmaceutical products
manufactured by different pharmaceutical firms.

Motivated by bioequivalence studies prevalent in pharmaceutical industries
given above, Huh (1994) proposed a testing procedure, as an alternative to the
usual significance testing procedure, for general two-sample situations, which he
called “equivalence testing via confidence interval” based on the ¢-based
confidence interval method, useful for showing that two population means are
equivalent. Though Huh’s proposal is a direct extension of the #-based
confidence interval method for bicequivalence, he fortified the testing procedure
with sound large-sample properties.

[t is apparent that this type of equivalence testing procedure can be applied tc
various fields where assurance of quality equivalence is needed.

In this article we observe and assess the performance of Huh’s equivalence
testing procedure when the sample size is small, which we believe is the most
practical situation. The criterion we choose is the behavior of PR curves
produced by the Monte-carlo simulation study. These curves are used for
choosing the appropriate sample size for a equivalence study.

We focus only on the one-sample case in view of relative availability introduced
in Section 2. Note that in view of statistical testing context the two-sample
problem reduces to the one-sample problem.
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2. Bioequivalence

Bioequivalence evaluations involve relative bicavailability, or bioavailability in
short, which means a comparison of two or more dosage forms in terms of their
relative rate and extent of absorption, according to Meyer (1988). Two dosage
forms do not differ significantly in their rate and extent of absorption are termed
bicequivalent. Hence, two bioequivalent formulations must make the active
ingredient available in the circulating blood and should not differ in their
therapeutic efficacy. The area under the concentration-time curve (AUC) is a
favorite measure of bicavailability as Metzler (1974) pointed out.

Although it is not easy to tell how much difference in relative bicavailability is a
limit in showing bioequivalence, a rule of thumb adopted in practice has been that
a new test formulation is bioequivalent to an established reference formulation if
the difference is less than 20% of the mean bioavailability of the reference
formulation. This interval of acceptable relative bioavailability is called the
acceptance interval.

Since a bioequivalence decision is based on sampie results, it is natural that the
bioequivalence decision rule should have solid statistical backgrounds. Among
many decision rules appeared until recently, a method of using the usual -based
confidence intervals for evaluating bioequivalence suggested by Metzler (1988,
1991) and Westlake (1972, 1976) is typical, which was approved officially by the
FDA.

Other bioequivalence decision rules include a Bayesian approach given by Rodda
and Davis (1980) and Mandallaz and Mau (1981), and the Anderson-Hauck
hypothesis test formulated by Anderson and Hauck (1983).

For the ¢-based confidence interval method, one computes the conventional -
based confidence interval for the relative bioavailabilaty of the two formulations.
If this confidence interval is contained in the preassigned acceptable interval, we
decide bioequivalence.

One way to characterize these rules is to consider the probability that they will
reject bioequivalence for a given value of the true relative bioavailability. If
these probabilities of rejection are computed across a range of relative
bioavailabilities, a probability of rejection curve (PR curve) can be drawn to show
the characteristics of the rules. The PR curves depend on the variability of the
AUCs, the sample size, the level of significance, and the level of protection
against incorrectly deciding bioequivalence at the end points of the acceptance
interval. A reasonable choice of the protection level is known to be 95%.
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3. Simulations of PR Curves

Suppose that X,, X,, -, X, are a random sample of size » from a normal
distribution N (x, ¢”). We wish to infer that the population mean . is equivalent
to #,. In this case the equivalence testing procedure is given as follows: we first
obtain the usual #-based confidence interval C=(x—t,.,.,, s/N %, X+t,r .o SINH)
for . with confidence coefficient 1 —«, where s? is the sample variance and ¢,_, ...

is the upper a/2 quantile of the ¢ distribution with »—1 degrees of freedom. If C
is contained in a predefined acceptance interval E =(u, —6, u, +6), >0, then we
accept the claim of equivalence. Otherwise, the claim of equivalence should not
be accepted. |

In order to investigate the small sample behavior of the equivalence testing
procedure via confidence interval by the Monte-Carlo simulation study, we let 4 be
1. In terms of bioequivalence study x can be considered as relative availability.
In this case the hypotheses become H,: =1 versus H,: u#1.

A single set of » random observations from a normal distribution with mean 1
and standard deviation ¢ is generated. We used RANNOR, a normal random
number generator in SAS 6.04 software. We selected 0.1, 0.2, and 0.3 as the
values of s. These values correspond to 10%, 20%, and 30% of coefficients of
variation (CV), respectively. The sample sizes considered here are from 5 to 30
with an increment of 5.

For each sample generated, the usual #-based confidence interval is computed
for a given value of significance level. The values of significance level we
considered are 0.05 and 0.1. This confidence interval is compared to the
predetermined acceptance interval (x, —8, u, +5). As the values of & we choose
0.1, 0.15, 0.20, and 0.25. For each combination of simulation design parameters, we
repeat prescribed simulation steps 1,000 times and relative frequencies of rejecting
the equivalence claim are calculated. Finally we applied the spline smoothing
routine to values of empirical probabilities to produce the PR curves.

4. Behavior of PR Curves

Typical forms of PR curves for some combinations of parameters are given in
{Figure 1) to (Figure 6.

A desirable PR curve, in general, should approach to zero probability of
rejecting equivalence rapidly when the relative availability is around 1 and should
approach to probability one when the relative availability is outside the
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preassigned acceptance interval.

From the simulation results we observe as expected that the PR curves move
downward (i) as § increases, (ii) to 0 around =1 as » becomes large, and (iii) as a
increases. Since Huh developed the equivalence testing procedure according to
the FDA guidelines that upto 20% difference of mean relatjive availability is
allowed with a protection level of 95%, Figures show common phenomena that all
of the PR curves pass through 1—4/2 point of probability of rejecting equivalence
when the true mean , is at the boundary g, +6. This is, however, rather
surprising because the equivalence testing procedure via confidence interval Huh
proposed is based on large-sample theory.

{Figure 1) shows four PR curves with 6=0.1, 0.15, 0.2, and 0.25 when the
sample size n =5, the coefficient of variation CV =10%, and the significance level
a=0.05. Among these four PR curves, only the PR curve for §=0.25 has a
desirable form. The PR curve for §=02 appears to be not bad, but barely
acceptable. Remaining two PR curves are not recommendable.

The parameter values for (Figure 2> are the same as (Figure 1) except that « is
set to 0.1. (Figure 2) shows a similar pattern compared to (Figure 1).

(Figure 3) and (Figure 4) are the cases of #=10. Only a values are different.
These Figures in common suggest that the PR curves for §=0.15, 0.2, and 0.25
behave very well.

(Figure 5> and (Figure 6) are the case of #=20 and CV=20%. Namely
observations are more dispersed than those in (Figure 1) to (Figure 4)>. In these
cases the PR curves for §=0.2 and 0.25 performed satisfactorily.

( Table 1 ) Recommended sample size for equivalence testing
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{ Figure 1 } PR curves: n=5, alpha=0.05, CV=10%, deita=0.1, 0.15, 0.2, 0.25
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( Figure 2 } PR curves: #=5, alpha=0.10, CV=10%, delta=0.1, 0.15,0.2, 0.25
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( Figure 4 ) PR curves: =10, alpha=0.10, CV=10%, delta=0.1, 0.15, 0.2, 0.25
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( Figure 5 ) PR curves: #=20, alpha=0.05, CV=20%, delta=0.1, 0.15, 0.2, 0.25
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( Figure 6 » PR curves: #=20, alpha=0.10, CV=20%, delta=0.1, 0.15, 0.2, 0.25
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The behavior of PR curves is not always acceptable, especially when the sample
size is very small and CV is large. It also depends on the significance level.
{Table 1) shows a summary of recommended sample sizes for various cases.
From (Table 1), one may see that the equivalence testing procedure requires
rather large sample sizes in most cases.
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