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Logistic Regression for Retrospective Studies
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Dept. of Mathematics, Song Sim University

Abstract

We consider logistic models based on retrospective, case-control data with
stratified samples and study the Weighted Exogeneous Sampling Maximum
Likelihood (WESML). We develop a consistent estimator of the asymptotic
covariance matrix of the WESML estimator,

1. Introduction

The logistic regression model has been applied to two distinct sampling designs:
prospective sampling and retrospective sampling. In prospective sampling, a
sample of subjects is chosen from the population of interest and the values of the
response and explanatory variables are determined. In a retrospective case-
control study, separate samples of fixed size are taken from cases (Y =1) and
controls (Y =0) respectively, then the values of the explanatory variables are
measured for each subject selected. For practical reasons, sampling is often
stratified by factors such as age, gender or location.

Since maximum likelihood methods may be difficult to implement for complex
sampling designs, there has been research on adapting standard technique for
fitting prospective logistic models to complex sampling such as stratified case
control sampled data. Prentice and Pyke (1979) have shown that valid estimates
of the odds-ratio parameters p and their asymptotic covariance in a logistic
regression model may be obtained from simple case-control data by fitting the
model as if the data had been obtained in a prospective sampling. That is, the
sampling scheme can be ignored and the model fitted using a standard logistic
regression program as if the data were prospective. Manski and Lerman (1977
proposed the Weighted Exogeneous Maximum Likelihood (WESML) estimator
which is based on the weighted log-likelihood function for hypothetical
prospectively sampled data. Fears and Brown (1986) developed another procedure



112 473483 4224 A4z 19943 129

for logistic regression analysis of stratified case-control data. They assumed
known sampling rates as well as known total populations of each stratum. They
fitted the usual prospective model to the case-control data, treating case-control
status as a binary outcome variable. In order to adjust for case-control sampling,
they included the logarithm of the sampling fraction in the regression equation.
Breslow and Zhao (1988) showed that the estimation procedure suggested by Fears
and Brown was equivalent to the conditional maximum Likelihood (CML)
estimator developed by Manski and McFadden (1981).

In this paper we consider stratified case-control sampling and study the
weighted exogeneous sampling maximum likelihood estimate, which was
introduced for simple choice-based sampling by Manski and Lerman (1977). We
develop a consistent estimator of the asymptotic covariance matrix of the WESML
estimator of the logistic regression coefficient. We adapt White's consistent
covariance estimation (1980) for estimating the standard error in logistic
regression model under stratified case-control sampling.

2. Notation and Assumptions

Suppose we have a finite known population of N,, cases and N, controls in
each stratum g=1, .., G; a (px1) vector of stratum explanatory variables Z,; a
(gx1) vector of discrete within-stratum explanatory variables Z ,.

Suppose we have sample of size n,, are selected from the cases and #,, from the
controls independently. =, and N, denote the total sample and population size of

stratum g respectively.
The logistic regression model to be fitted has the following form:

Pr(Y =1| z,, stratum=g) = exp(z, a+z,’'p)/{1+exp(z, atz:;'p)}
= exp(z,;' 0)/{1+exp(z, 0}

, where §=(a', ') and Z ,, =(Z ../, Z.,).
Let p,, =Pr(Y =1i|z,, stratum = g), p,, = Pr(Y =i, z, = z,;, stratum = g) and
wi, =Pr(Y =i, stratum=g). Let p¥,; and u}, be p,; and p,; evaluated at the true
parameter 6* respectively.

The following assumptions will be maintained throughout this paper.

. n
Assumption 1: There exist constants p,, > and {, >0 such that lim

ng—® ’]

=Pigs
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and umﬁn‘i— =, (G=0,1; g=1, .., G).

Assumption 2: n,/N,—v, and »/ N — v for some positive v, and v.

Assumption 3: C= Zﬁ-g—- (udy; tutei) DYy DY 245 2,; exists and nonsingular.

g’ﬂg

3. WESML Estimator

If the data had been obtained by stratified prospective sampling with #,
observation per stratum, the cell frequencies #,,, would have independent
binomial distributions with parameters ».,, and p,,, for g=1, ..., G; 7=1, ..., ».
The joint log-likelihood function for the stratified prospective sampling could be
written

105{L o« Zznly‘éw ' Q—Zzn‘rei IOg{1+exD(£xi’ Q) }
8 7 g J

The estimate which maximizes this log-likelihood function would be consistent
under prospective sampling. In general this estimate is known to be inconsistent
in the stratified case-control sampling situation.

To obtain a consistent estimate we use a weighted log-likelihood function which
was introduced by Manski and Lermann (1977) for simple choice-based sample,
The weights which restore the expected proportions of cases and controls under
stratified prospective sampling is w, (1) =(N, n,}/(N, n,). Thus, the estimated
prospective cell frequencies are #,,; =n,,; w, ().

The WESML estimator, éwesm. maximizes the weighted prospective log likelihood

function
_%- ZZZ W, (2) Nig; Ing pigj .

That is, éwesm is a root of the equation

LZ n 127 h*—gj Dra ) =_Q . (1)

By the generalization of Manski and Lermann (1977) results we get the
following theorem.
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Theorem 1. The distribution of v/ #(f..m —8) is asymptotically normal with mean
zero and covariance matrix

éwesm} = _C___] A Q“l
= g-—l {;;(ﬂ;g/ﬂg)z ({g/pig) _a_ig Qig gx’g' }th,
where Qi = (Dogr Zgly -onee s Doer Egr), Vg = (Ilul/#lx, ----- s #m/ﬂlg),

Q, = diag(ﬂlgl /Illg, cany #lgr/ﬂxg) ”21&, [4VE
Q. Vo, and Q,, are analogously defined.

Proof. The proof is given in Appendix.

4. The Consistent Covariance Estimate

A significant advantage of the WESML estimator is its computational simplicity.
Existing logistic regression software is easily modified to yield the WESMI.
estimate and its asymptotic variance matrix. The problem with WESML is that
the standard errors of the regression coefficients printed by logistic regression
software would be incorrect. If it were possible to replace 4.... with a consistent
estimator, the usual asymptotic tests could be performed. It is natural to estimate
C by its consistent estimator

Qn = -}; 2‘;; ;1+£i ﬁlgi ﬁoy _z__gi Egj”
where p,,, is fitted probability of being ¥ =i.

The difficulty arises in estimating A. In the proof of theorem 1, we derived the
asymptotic variance A from following equation

= IR G g ) 2a = = SET W, (1) 20

vn n g

This equation can be written in disaggregated form as

- - N (4 — _ o
\/—"; Z; k;l w, (l) (l plgk)éugk (tfr)
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where z,, denotes the (p+¢) X1 vector of design variables for the kth of the =,
subjects with Y =1 in stratum g.
For notational simplicity let us define

P
i zigk

éiﬂk = wg(i) (i——ﬁlgk)_z_ka, and %,‘5 = k;l .
g

Then equation (2) can be written as L ¥y }E Zigh -
\/71' i g k=1

The variance of equation (2) would naturally be estimated by
1 LN T oy, < .,
E” = _n—zz Z (Eigk —_'Eig) “Eigk "E,‘g) .
g kel

This leads us to consider the following consistent covariance matrix estimate.

Theorem 2. A consistent estimate of the asymptotic covariance matrix 4....
under stratified case-control sampling is duem =C:' E. Ci.

Proof. The proof is given in Appendix.

5. Simulation Study and Conclusions

A small scale simulation study was carried out in order to evaluate the accuracy
of the proposed consistent covariance matrix estimator in theorem 2. We use the
same setup as in Breslow and Zhao’s simulation (1988).

The range of the stratum variable z, is (1, 2, 3) and the explanatory variable z.
is binary. The true parameter value is set at (a,, a,, f) =(—4, 1, 1) and the ratio
of population frequencies N, /N,, is set to (0.1, 0.2, 0.5) for g=1, 2, 3. Balanced
case and control samples of size n,, =25, 50 and 100 are drawn from each of the
three strata and hinomial observations of the number with z, =1 out of #n, are
generated for each strata using p, =(z, =1|Y =4, stratum =g) which is calculated
later. Each experiment is replicated 1,000 times.

The model to be fitted is

p(Y =1]|z,, stratum =g) ={1+exp( —a; —a1 2, —B2,)} .
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Let N,; be the numbe of population with ¥ =7 and Z, =; in the gth stratum.
Then pi, =N /{(Niwo +N,) and g, =1—p,, .
Using the relations N, = N,,, exp(a,+a,Z,,) and N,,. =N,,, expla,+a, Z,, +8),
we obtain

ng/Nog = eXp(ao +a121g)(qag +eﬁpog) (31

From equation (3) we can find p,, and p,,.

{Table 1), (Table 2> and (Table 3) show the the average values of the WESML
estimates over the 1,000 replicates( ... ), the empirical standard deviation of the
WESML estimates (Empirical s.d.), and the average of the estimated standard
deviation using éwm over the 1,000 replicates (average of estimated s.d.).

Even with moderate sample sizes »n,, (i=0, 1; g=1, 2, 3) the empirical average
values of the WESML estimates are close to the true parameter (—4, 1, 1) and the
estimators approach the true parameter as n, increase. In (Table 1) (total
sample size =150), the average values of the WESML estimate are ( —4.042, 1.014,
1.025). In (Table 3) (total sample size =600), we have the average values of the
WESML estimates ( —4.013, 1.004, 1.010). WESML estimates are different from
the true parameter by at most two digits in the third decimal place. The standard
deviation estimates for WESML are very consistent with the empirical standard
deviation.

( Table 1 ) Simulation results with n,, = 25

parameter éwml Empirical s.d. average of estimated s.d.
a, —4.042 0.3944 0.3823
a 1.014 0.1099 0.1035
B 1.025 0.4024 0.3931
{ Table 2 ) Simulation results with n;, = 50

parameter O esmi Empirical s.d. average of estimated s.d.
a, —4.023 0.2655 0.2676
@ 1.008 0.0747 0.0724
1.011 0.2704 0.2770
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( Table 3 ) Simulation results with n,, = 100

parameter éwml Empirical s.d. average of estimated s.d.
ay —4.013 018634 0.1883
a 1.004 0.0502 0.0505
B 1.010 0.1919 0.1951

The (Table 4) shows the percents of the WESML estimates within 1, 2, and 3
standard deviation of the average. Comparing the percents for WESML
estimates with percents for the normal distribution we conclude that the WESML
estimates well approximated by a normal distribution for moderate sample sizes.

( Table 4 ) Normal counts percents

normal @y a Jis
ave + 1s.d. 68.26 % 71.4% 72.6% 70.4%
ave + 2s.d. 95.45% 96.2% 96.2% 96.3%
ave + 3sd. 99.73% 99.6% 99.5% 99.8%
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APPENDIX

0 i Mg . .
Lemma 1. Under case-control sampling, Z—a“—lf’i— Z,; is asymptotically normal
7
Ny,

with mean+/ n,, @,, v,,” and covariance matrix a,, Q., 4., .

Proof : Under case-control sampling, (n,,,, ..., #:.) has a multinomial distribution

with parameters »,, and v,, for g=1, ..., G. The multivariate Lindeverg-Levy

Central Limit Theorem implies that — (101, ..., Ny, ) is asymptotically normal
. Ny,
with mean \/; 12 U1 and covariance matrix Q,, . QED
.. ple; Nog: . . . a , ’
Similarly 2—72::“ z,; is asymptotically normal with mean v/ 7, a., v, and
! A nlﬂg

covariance matrix ¢o, Qo, @, -

Lemma 2. —\'/-l::z:):,( Tlig; — Mg Prei) 24; converges in distribution to the normal
ne

distribution with mean zero and covariance matrix A.

Proof: The proof can be done by combining Assumption 1 and Lemma 1 with
Slutsky’s theorem. QE.D.

The proof of theorem 1.
A first-order Taylor expansion of i)m about the true value 6* gives

ﬁle; = plw +§gi’ (_o:wesnﬂ _Q‘) pcl,gi p?)gj, (4:/’

where p,, is p.,, evaluated at §° which is a point between §* and me} .
Substituting p,,; from (4) into equation (1), we obtain

Z;Z 24 {(;llgf ‘-ﬁﬂn Pies ) ";zhzr _z_gj’ pc;gj pggj (éwesml “Q‘)} = Q
Hence
(LT iee 2o 20 Doy Doas) V8 (B —6)

= XZ"—}.{(;’lzi “ﬁm plxj)_z_ei- (5
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Since the right side of equation (5) converges in distribution to N (0, A) by Lemma
2, we need to show that .ZZ% (s 24 24 Dlei Diwi} cOnverges in probability to C.
£ 7

Now

1 ,
oY .-—* {n"rw’ Rgi 24 pc;gj p?)gi}
g7 n

N g n Nog 7, Pogi } 24 20 Does Doei - (6)
igj ogi b &gj Rgj 187 ¥ 085
Ng ”n ¥4 N n 0g

>

By the WLLN #,;/n, converges in probability to u*,/u*, . Since @sn
converges in probability to 6*, 6° which is a point between éwesm, and 6* also
converges in probability to 6*. And p},; converges in probability to p3%,, by the
continuity property of p,,;. Hence equation (6) converges in probability to C.
QE.D

The proof of theorem 2.

By the same argument we used in theorem 1 to prove (6) converges in
probability to C we can show C, converges in probability to C. To prove E,
converges in probability to A we rewrite E, in aggregated form again. .

pomLlee g s Lo b (¥ )
_l_‘in - n T..A;é.:] élgk Eigk - n ;;_,g iy ( l;-;l E ; &gk
1 -
= ';{}_.\x_. ’_.nzgf wg (G- plg/‘)z Zei Em‘,
4 }
“"%_,._.Z ;l——( an} W, (Z) (l plgj) Eg/)( Znigf W, (l)(l“plg;) Ex/’)l
ig ’
N, n, n ”n;
= Iy e B B f g,
‘57‘_;7‘ Ng 7, n ‘T’ 7, plez ~g g/

‘“( Z Piss (l-"‘ﬁxg,‘)ﬁzj)( Z, P (i_i’lgj)f;u),}-

7 Nig 7 Nig

The proof is done by Assumption 1, Lemma 1 and the fact p,, converges in
probability to p,,, . QED.



