Golf Club Head용 감나무재의 Microwave 건조 (Ⅱ)†

김나무 블럭의 건조 경과와 온도 변화

姜 瑩 阳 ‡

Microwave Drying of Persimmon Blocks for Golf Club Head (Ⅱ †)

－Drying Curves and Temperature Distribution of Persimmon Blocks－

Ho-Yang Kang ‡

ABSTRACT

The presteamed or prefrozen persimmon blocks of 10cm × 10cm × 15cm were air-dried at room temperature until about 30% moisture content, and then were dried in a MW oven. During drying their internal temperatures were monitored with thermo-couple probes. The presteamed and prefrozen blocks didn’t show any improvement in drying rate and moisture gradient when compared with the controls. Checks appeared on the surfaces of most presteamed blocks during air-drying. It has been clearly revealed that the maximum weight loss must be less than 2g/min during MW drying to prevent internal checking and that MW drying reduced moisture gradients inside blocks. MW dried the persimmon blocks 440 times faster than conventional kiln.

Keywords : Microwave drying, persimmon, presteaming, prefreezing

1. 서 론

전보(강, 1995)에서는 두께 30mm 감나무재의 Microwave(MW)건조 가능성을 조사하였다. 생체를 직접 MW 건조하였을 때는 거의 대부분 내부 합이 발생하였으나 공기관계를 상온에서 건조시(합수율 20 ～ 25%)까지 건조한 다음 MW 건조하면 건조결함 없이 깔끔한 관체를 얻을 수 있었다. 이러한 결과를 이용하면 지급까지 전연건조에만 의존하던 소규모 목공에 업체에서도 톤별한 시설 투자없이 가정용 전자렌지 사용하여 목공제품의 적정 합수율인 8 ～10%까지 소재를 건조할 수 있다.

MW 건조가 일반 건조보다 목재내에서 수분을 매우 빨리 제거한다는 것은 잘 알려져 있다(Harris, 1984). 그러나 증기 건처리, 냉동 건처리 등의 건조 전처리가 MW
2. 재료 및 방법

2.1 공시재료

사용된 공시수종은 국산간나무(Diasyplos kaki Thunb.)로 대전근교 제재소에서 벌취된지 얼마되지 않는 동나무 3주를 구입하여 그곳에서 제재하였다. 동나무의 말목 직경은 각각 36cm, 30cm, 25cm으로 제재 방법은 동나무의 전체를 피하여 동나무 당 2개의 10cm x 10cm 각재를 제외하였다.

10cm x 10cm 각재를 길이 50cm로 잘라 실험 시작까지 5℃냉장고에 보관하였다. 전처리 직전에 50cm 각재에서 길이 15cm의 GCH 블러리를 세 개씩 잘라 각각 두처리. 증기처리, 난방처리로 분류하였다. 전처리를 실시하는 동안 무처리재는 다시 5℃의 냉장고에 보관하였다.

생제를 MW 건조할 때 발생하는 내부하열을 줄이기 위해 전처리가 끝난 후 모든 시편은 풍속이 1m/sec 이하인 실내에서 자연건조시켰다.

2.2 증기처리와 난방처리

증기처리재는 100℃의 autoclave에서 4시간 증기처리하였으며, 난방처리재는 영하 30℃의 냉동고에 5일간 보관하여 난방처리하였다. 전처리가 끝난 후 무처리재와 같이 5℃ 냉장고에 보관하였다.

2.3 내부온도측정

건조시 목재내부의 온도 변화는 열전방(T-type, JIS 규격)을 목재내부에 설치한 후 도출을 YOKOGAWA 6 타종 기록계에 연결하여 기록하였다. 기록계의 오차는 ±0.1℃이하 본 논문작성을 위하여 기록치를 원수 수치화 하였기 때문에 본 논문에 표기된 온도의 오차는 이보다 를 수밖에 없었다.

2.4 Microwave 건조와 열기건조

사용한 Microwave 오븐은 최대 출력 700 watts 가정용으로 출력을 여러 가지로 조절할 수 있으며 본 연구에서는 최대 출력의 30% 정도인 200watts만을 사용하였다. 내부 반침은 회전식으로 목재가 전자파를 고르게 쏘아도록 되어 있으나 내부온도 측정을 위해 공시시편에 열전방을 설치하였을 때는 회전반을 막기 위해 내부 반침이 회전하지 못하도록 조치하였다. MW 건조효과를 비교하기 위해 일반 열기건조도 병행하였다. 열기건조는 온습도 조성이 가능하고 내부동력이 1.5m/sec인 humidity chamber에서 실시하였다. 본 연구에서 사용한 열기건조 스케줄은 아래와 같다(USDA, 1988).

<table>
<thead>
<tr>
<th>Table 1. Kiln-dry schedule for golf head block (T3-C2).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture Content (%)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>above 40</td>
</tr>
<tr>
<td>40 - 35</td>
</tr>
<tr>
<td>35 - 30</td>
</tr>
<tr>
<td>39 - 25</td>
</tr>
<tr>
<td>25 - 20</td>
</tr>
<tr>
<td>20 - 15</td>
</tr>
<tr>
<td>15 - final</td>
</tr>
</tbody>
</table>

3. 결과 및 고찰

3.1 방향 및 해방시 목재 내부 온도 변화

가로 세로 각각 10cm. 길이 15cm GCH 블러리를 표층에서 25mm 지점에 열전방을 설치 영하 30℃ 방동실에서 방동 전처리에서 목재의 온도 변화를 측정하였다 (Fig.1). 또 방동 전처리를 마친 후 블러리를 설치한 후이 해방시 목재의 온도 변화도 관찰하였다. 방동실의 온도는 영하 30℃로 설정되어 있었으나 열전
생으로 측정한 낭동실의 온도는 26℃였으며 GCH 블러크 25mm 지점은 18시간 정도 지나서 이 온도에 도달하였 다. 따라서 GCH 블러크의 중심까지 냉동되어 24시간 이상 소요될 것으로 추정된다. 이후 해동 전까지 시간은 낭 동실에 5일간 보관하였다. 낭동시작 이전에 블러크 표면 에서 핀들을 발견하였는데 2 3mm 정도의 은은 핀들이 있다. 지금까지 저렴으로 보아 이 핀들은 냉동처리에 의해 발생한 것이 아니라 이미 냉동처리 전에 있었던 것으로 단위 있다. 낭동에 의한 자유수 퍼짐으로 벌어진 것으로 보인다.

해동시 실내온도는 18℃로 GCH 블러크의 25mm 지점 이 온도에 도달하는데 걸린 시간은 해동 시작 후 12시간이었으며, 이후 블러크의 온도는 실내온도와 같은 변화를 보였다.

3.2 MW 건조 중 GCH 블러크 내 온도 변화

MW 건조 중 GCH 블러크 내의 온도 변화를 측정하기 위해 1 2께 점에 각기 방향으로 균등하게 3개의 열전선을 설치하였으며, 내측과 표층의 온도로 비교한 후에 블러크의 표면에도 열전선 하나를 설치하였다.

Fig. 2에 보이는 바와 같이 블러크의 한쪽이 중앙이나 다른 쪽보다 건조 초기부터 말기까지 계속 높은 온도를 보이고 있는데 이는 부근의 전기장 밀도가 높았기 때문인 것으로 사료된다. 건조 시작 후 18분음에 중심 열전선의 온도가 100℃에 도달하였으며 25분음에는 세 열전선의 온도가 모두 100℃이 나타났다. 블러크 표면의 온도는 전 건조기간 동안 가장 낮았으나 내부의 가장 낮은 온도와 벌 차이가 없었다. 21분에서 36분 사이에는 표면 열전선의 이상으로 표면의 온도를 측정치 못하였다. 블러크의 초기함수율과 최종함수율은 각각 32%와 14%였다.

3.3 건조속도에 대한 전처리 효과

대표적인 전처리 별 건조곡선은 Fig. 3과 같다. 속이 편 기호들은 블러크를 하나씩 건조한 경우이고 점은 기호들은 각각 블러크를 동시에 건조한 경우이다. 같은 건조조건 내에서 초기 함수율 차에 따른 건조곡선 차이는 보이지만 전처리 방법에 따른 차이는 발견할 수 없었다. 이는 MW 건조는 건조속도가 매우 빠르기 때문에, 비록 전처리에 의한 건조속도 변화가 존재하더라도 이 작은 건조속도 변화를 감지하기가 어렵기 때문이라고 할 수 있다.

Fig. 3. The Drying curves of the pretreated blocks. It shows no significant difference of drying rate between the pre-treatments. Squares, triangles and diamonds indicate the control, pre-frozen and presteamed blocks, respectively. The run of 2 blocks (black) dried slower than the runs of single block (empty).
Fig. 4. The drying rate curves of the pretreated blocks. It shows no significant difference between the pretreatments. Squares, triangles and diamonds indicate the control, pre-frozen and presteamed blocks, respectively. The run of 2 blocks (black) dried slower than the runs of single block (empty).

Fig. 5. A cutting diagram of the moisture gradient specimen.

Fig. 6. The moisture gradients of the MW-dried specimens. It shows that MW drying results in relatively uniform moisture gradient within a specimen when compared with kiln drying. Symbols indicate the control (square), pre-frozen (triangle) and presteamed (diamond) blocks.

Fig. 7. The moisture gradients of the conventional kiln drying specimens. It shows that kiln drying results in high MC at the middle of the persimmon blocks. Symbols indicate the control (square), pre-frozen (triangle) and presteamed (diamond) blocks.
시편의 중심(흡수율 시진2-4) 흡수율이 다른 부위보다 높게 높았다(Fig. 7).
따라서 건조 종료 시점을 잘 맞춘다면 MW 건조로 GCH 블러의 내부 수분 경사를 낮출 수 있다.

3.5 건조 결합
전처리 GCH 블러를 실험에서 흡수율 30% 정도까지 건조한 다음 MW 건조하면서 건조 결합의 발생을 관찰 하였다.
증기 전처리 블러는 모두 실험 건조 중에 점산단면에 할라인이 나타났다. 무처리와 냉동 전처리 밀도 MW 건 조 중 최대 단면 두께 변화가 2그램을 넘었을 때는 대부분 내부 할라인이 발생하였다.
열기 건조한 블러들은 최중 흡수율 8%까지 건조하는 동안 아무런 건조 결합이 발생하지 않았다. 그러나 열기 건조 시간은 MW 건조 시간에 비해 짧은 흡수율 변화 동안 440배나 더 길었다.
전보(강, 1995)와 마찬가지로 증기 전처리비와 냉동 전처리비의 색상은 건조 전후에 모두 깨끗하였으나 무처리는 건조 전에 벌써 점반이 표면부터 내부까지 발생하였다.

4. 결 론
가정용 Microwave 오븐을 이용하여 가로 세로 각각 10cm, 깊이 15cm Golf Club Head(GCH)용 갑납무 블러건조하면서 수분의 변화와 온도 변화를 측정하여, 신속하고 효과적인 건조 방법을 찾고자 하였다. 본 연구에서 얻은 결론은 다음과 같다.
1. 증기 전처리, 냉동 전처리 블러의 MW 건조 효과 을 무처리와 비교하였을 때 건조 속도, 수분 경사 등에서 차이가 발견되지 않았다.
2. 증기 전처리 블러는 모두 실험 건조 중에 점산단면에 할라인이 발생하였다. 이는 증기 전처리가 부재 강도를 떨어뜨린 때문인 것으로 사료된다.
3. MW 건조 중 최대 단면두께 변화가 2그램(약 0.27%MC/분)을 넘었을 때, 전처리 종류에 관계 없이 내부 할라인이 나타났다. 그러나 최대 단면두께 변화가 2그램 이하일 때는 결합이 전혀 나타나지 않았다.
4. MW 건조한 블러의 내부 수분경사는 열기 건조한 블러의 것보다 훨씬 낮았다.
5. 동일한 흡수율 변화량 MW 건조에 걸리는 시간 은 열기 건조에 걸리는 시간의 1/440 이하였다.

참 고 문 헌
9. 강호영. 1995. Golf Club Head용 갑납무제의 Microwave 건조(1) ~ 30mm 판재의 건조경과와 온도변화, 목재공학 23(1) : 35 ~ 41